File size: 2,223 Bytes
4d70d57
 
 
 
e90b7f9
 
4d70d57
 
 
 
 
 
 
 
 
 
 
 
 
 
e90b7f9
 
 
 
 
 
4d70d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e90b7f9
 
 
 
 
 
 
 
 
 
 
 
4d70d57
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model: facebook/bart-large
library_name: peft
license: apache-2.0
metrics:
- rouge
tags:
- generated_from_trainer
model-index:
- name: bart-large-summarization-medical_on_cnn-43
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-summarization-medical_on_cnn-43

This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co./facebook/bart-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0298
- Rouge1: 0.2443
- Rouge2: 0.0871
- Rougel: 0.193
- Rougelsum: 0.2171
- Gen Len: 18.859

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 43
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.2146        | 1.0   | 1250 | 3.0347          | 0.2365 | 0.083  | 0.1868 | 0.2101    | 19.329  |
| 2.1322        | 2.0   | 2500 | 3.0354          | 0.2419 | 0.0862 | 0.1911 | 0.2142    | 19.0    |
| 2.0892        | 3.0   | 3750 | 3.0422          | 0.2411 | 0.0851 | 0.1903 | 0.2134    | 18.943  |
| 2.0772        | 4.0   | 5000 | 3.0387          | 0.2423 | 0.0857 | 0.1911 | 0.2145    | 18.869  |
| 2.0742        | 5.0   | 6250 | 3.0307          | 0.2448 | 0.0868 | 0.193  | 0.2171    | 18.828  |
| 2.0673        | 6.0   | 7500 | 3.0298          | 0.2443 | 0.0871 | 0.193  | 0.2171    | 18.859  |


### Framework versions

- PEFT 0.11.1
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1