File size: 2,223 Bytes
4d70d57 e90b7f9 4d70d57 e90b7f9 4d70d57 e90b7f9 4d70d57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: facebook/bart-large
library_name: peft
license: apache-2.0
metrics:
- rouge
tags:
- generated_from_trainer
model-index:
- name: bart-large-summarization-medical_on_cnn-43
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-summarization-medical_on_cnn-43
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co./facebook/bart-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0298
- Rouge1: 0.2443
- Rouge2: 0.0871
- Rougel: 0.193
- Rougelsum: 0.2171
- Gen Len: 18.859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 43
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.2146 | 1.0 | 1250 | 3.0347 | 0.2365 | 0.083 | 0.1868 | 0.2101 | 19.329 |
| 2.1322 | 2.0 | 2500 | 3.0354 | 0.2419 | 0.0862 | 0.1911 | 0.2142 | 19.0 |
| 2.0892 | 3.0 | 3750 | 3.0422 | 0.2411 | 0.0851 | 0.1903 | 0.2134 | 18.943 |
| 2.0772 | 4.0 | 5000 | 3.0387 | 0.2423 | 0.0857 | 0.1911 | 0.2145 | 18.869 |
| 2.0742 | 5.0 | 6250 | 3.0307 | 0.2448 | 0.0868 | 0.193 | 0.2171 | 18.828 |
| 2.0673 | 6.0 | 7500 | 3.0298 | 0.2443 | 0.0871 | 0.193 | 0.2171 | 18.859 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |