--- base_model: google/pegasus-x-large tags: - summarization - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: pegasus-x-large-finetuned-samsum1000 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 39.4817 --- # pegasus-x-large-finetuned-samsum1000 This model is a fine-tuned version of [google/pegasus-x-large](https://huggingface.co./google/pegasus-x-large) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.6845 - Rouge1: 39.4817 - Rouge2: 17.2378 - Rougel: 33.2558 - Rougelsum: 35.8353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.9981 | 1.0 | 125 | 1.6845 | 39.4817 | 17.2378 | 33.2558 | 35.8353 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1