trustvis_with_dataset / subject_model_eval.py
Yvonnefanf
first
7b5e67a
########################################################################################################################
# IMPORT #
########################################################################################################################
import torch
import sys
import os
import json
import time
import numpy as np
import argparse
from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
from umap.umap_ import find_ab_params
from singleVis.custom_weighted_random_sampler import CustomWeightedRandomSampler
from singleVis.SingleVisualizationModel import VisModel
from singleVis.losses import UmapLoss, ReconstructionLoss, TemporalLoss, DVILoss, SingleVisLoss, DummyTemporalLoss
from singleVis.edge_dataset import DVIDataHandler
from singleVis.trainer import DVITrainer,DVIALTrainer
from singleVis.eval.evaluator import Evaluator
from singleVis.data import NormalDataProvider
# from singleVis.spatial_edge_constructor import SingleEpochSpatialEdgeConstructor
from singleVis.spatial_skeleton_edge_constructor import ProxyBasedSpatialEdgeConstructor
from singleVis.projector import DVIProjector
from singleVis.utils import find_neighbor_preserving_rate
from trustVis.skeleton_generator import SkeletonGenerator,CenterSkeletonGenerator,HierarchicalClusteringProxyGenerator
########################################################################################################################
# DVI PARAMETERS #
########################################################################################################################
"""This serve as an example of DeepVisualInsight implementation in pytorch."""
VIS_METHOD = "DVI" # DeepVisualInsight
########################################################################################################################
# LOAD PARAMETERS #
########################################################################################################################
parser = argparse.ArgumentParser(description='Process hyperparameters...')
# get workspace dir
current_path = os.getcwd()
new_path = os.path.join(current_path, 'training_dynamic')
parser.add_argument('--content_path', type=str,default=new_path)
parser.add_argument('--start', type=int,default=1)
parser.add_argument('--end', type=int,default=3)
# parser.add_argument('--epoch_end', type=int)
parser.add_argument('--epoch_period', type=int,default=1)
parser.add_argument('--preprocess', type=int,default=0)
parser.add_argument('--base',type=bool,default=False)
args = parser.parse_args()
CONTENT_PATH = args.content_path
sys.path.append(CONTENT_PATH)
with open(os.path.join(CONTENT_PATH, "config.json"), "r") as f:
config = json.load(f)
config = config[VIS_METHOD]
# record output information
# now = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime(time.time()))
# sys.stdout = open(os.path.join(CONTENT_PATH, now+".txt"), "w")
SETTING = config["SETTING"]
CLASSES = config["CLASSES"]
DATASET = config["DATASET"]
PREPROCESS = config["VISUALIZATION"]["PREPROCESS"]
GPU_ID = config["GPU"]
GPU_ID = 0
EPOCH_START = config["EPOCH_START"]
EPOCH_END = config["EPOCH_END"]
EPOCH_PERIOD = config["EPOCH_PERIOD"]
EPOCH_START = args.start
EPOCH_END = args.end
EPOCH_PERIOD = args.epoch_period
# Training parameter (subject model)
TRAINING_PARAMETER = config["TRAINING"]
NET = TRAINING_PARAMETER["NET"]
LEN = TRAINING_PARAMETER["train_num"]
# Training parameter (visualization model)
VISUALIZATION_PARAMETER = config["VISUALIZATION"]
LAMBDA1 = VISUALIZATION_PARAMETER["LAMBDA1"]
LAMBDA2 = VISUALIZATION_PARAMETER["LAMBDA2"]
B_N_EPOCHS = VISUALIZATION_PARAMETER["BOUNDARY"]["B_N_EPOCHS"]
L_BOUND = VISUALIZATION_PARAMETER["BOUNDARY"]["L_BOUND"]
ENCODER_DIMS = VISUALIZATION_PARAMETER["ENCODER_DIMS"]
DECODER_DIMS = VISUALIZATION_PARAMETER["DECODER_DIMS"]
S_N_EPOCHS = VISUALIZATION_PARAMETER["S_N_EPOCHS"]
N_NEIGHBORS = VISUALIZATION_PARAMETER["N_NEIGHBORS"]
PATIENT = VISUALIZATION_PARAMETER["PATIENT"]
MAX_EPOCH = VISUALIZATION_PARAMETER["MAX_EPOCH"]
VIS_MODEL_NAME = 'proxy' ### saved_as
v_base = args.base
if v_base:
VIS_MODEL_NAME = 'v_base'
EVALUATION_NAME = VISUALIZATION_PARAMETER["EVALUATION_NAME"]
# Define hyperparameters
DEVICE = torch.device("cuda:{}".format(GPU_ID) if torch.cuda.is_available() else "cpu")
import Model.model as subject_model
net = eval("subject_model.{}()".format(NET))
########################################################################################################################
# TRAINING SETTING #
########################################################################################################################
# Define data_provider
data_provider = NormalDataProvider(CONTENT_PATH, net, EPOCH_START, EPOCH_END, EPOCH_PERIOD, device=DEVICE, epoch_name='Epoch',classes=CLASSES,verbose=1)
PREPROCESS = args.preprocess
if PREPROCESS:
data_provider._meta_data()
if B_N_EPOCHS >0:
data_provider._estimate_boundary(LEN // 10, l_bound=L_BOUND)
# Define visualization models
model = VisModel(ENCODER_DIMS, DECODER_DIMS)
# Define Losses
negative_sample_rate = 5
min_dist = .1
_a, _b = find_ab_params(1.0, min_dist)
umap_loss_fn = UmapLoss(negative_sample_rate, DEVICE, _a, _b, repulsion_strength=1.0)
recon_loss_fn = ReconstructionLoss(beta=1.0)
single_loss_fn = SingleVisLoss(umap_loss_fn, recon_loss_fn, lambd=LAMBDA1)
# Define Projector
projector = DVIProjector(vis_model=model, content_path=CONTENT_PATH, vis_model_name=VIS_MODEL_NAME, device=DEVICE)
evaluator = Evaluator(data_provider, projector)
Evaluation_NAME = 'subject_model_eval'
for i in range(EPOCH_START, EPOCH_END+1, EPOCH_PERIOD):
evaluator.save_epoch_eval_for_subject_model(i,file_name="{}".format(Evaluation_NAME))