File size: 5,471 Bytes
85879a6 4ebf23d 85879a6 4ebf23d 85879a6 dab518a 85879a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
language:
- zh
- en
library_name: transformers
pipeline_tag: text2text-generation
datasets:
- Yaxin/SemEval2016Task5NLTK
metrics:
- yuyijiong/quad_match_score
---
最新版本:[yuyijiong/T5-large-sentiment-analysis-Chinese-MultiTask](https://huggingface.co./yuyijiong/T5-large-sentiment-analysis-Chinese-MultiTask)
[yuyijiong/Randeng-T5-large-sentiment-analysis-Chinese](https://huggingface.co./yuyijiong/Randeng-T5-large-sentiment-analysis-Chinese)的改进版,解决过拟合问题\
由[IDEA-CCNL/Randeng-T5-784M-MultiTask-Chinese](https://huggingface.co./IDEA-CCNL/Randeng-T5-784M-MultiTask-Chinese)在多个中英文情感分析数据集上微调得到 \
输出格式为
```
'对象1 | 观点1 | 方面1 | 情感极性1 & 对象2 | 观点2 | 方面2 | 情感极性2 ......'
```
可以使用yuyijiong/quad_match_score评估指标进行评估
```python
import evaluate
module = evaluate.load("yuyijiong/quad_match_score")
predictions=["food | good | food#taste | pos"]
references=["food | good | food#taste | pos & service | bad | service#general | neg"]
result=module.compute(predictions=predictions, references=references)
print(result)
```
支持以下情感分析任务
```
["四元组(对象 | 观点 | 方面 | 极性)",
'二元组(对象 | 观点)',
'三元组(对象 | 观点 | 方面)',
'三元组(对象 | 观点 | 极性)',
'三元组(对象 | 方面 | 极性)',
'二元组(方面 | 极性)',
'二元组(观点 | 极性)',
'单元素(极性)']
```
中文可以增加额外条件来控制答案的生成,例如:
答案风格控制,希望抽取的观点为整句话or缩减为几个词:\
(观点尽量短)\
(观点可以较长)
可以对指定的方面做情感分析:
(方面选项:商品/物流/商家/平台)
情感对象target可能为null,表示文本中未明确给出
可以允许模型自动猜测为null的对象:
(补全null)
support the following sentiment analysis tasks
```
["quadruples (target | opinion | aspect | polarity)",
"quadruples (target | opinion | aspect | polarity)",
'pairs (target | opinion)',
'triples (target | opinion | aspect)',
'triples (target | opinion | polarity)',
'triples (target | aspect | polarity)',
'pairs (aspect | polarity)',
'pairs (target | polarity)',
'pairs (opinion | polarity)',
'single (polarity)']
```
使用方法:
Usage
```python
import torch
from transformers import T5Tokenizer, AutoModelForSeq2SeqLM
tokenizer = T5Tokenizer.from_pretrained("yuyijiong/T5-large-sentiment-analysis-Chinese")
model = AutoModelForSeq2SeqLM.from_pretrained("yuyijiong/T5-large-sentiment-analysis-Chinese", device_map="auto")
generation_config=GenerationConfig.from_pretrained("yuyijiong/T5-large-sentiment-analysis-Chinese")
text = '情感四元组(对象 | 观点 | 方面 | 极性)抽取任务(观点可以较长): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。]'
input_ids = tokenizer(text,return_tensors="pt", padding=True)['input_ids'].cuda(0)
with torch.no_grad():
output = model.generate(input_ids=input_ids,generation_config=generation_config)
output_str = tokenizer.batch_decode(output, skip_special_tokens=True)
print(output_str)
```
用法示例
```
Q:情感四元组(对象 | 观点 | 方面 | 极性)抽取任务(观点可以较长): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。]
A:个头 | 大 | 商品#大小 | 积极 & 口感 | 不错 | 商品#口感 | 积极 & null | 个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好 | 商品#新鲜程度 | 消极
Q:情感四元组(对象 | 观点 | 方面 | 极性)抽取任务(观点可以较长,补全null): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。]
A:个头 | 大 | 商品#大小 | 积极 & 口感 | 不错 | 商品#口感 | 积极 & null (个别) | 有烂掉口子刻意用泥土封着,这样做不好 | 商品#新鲜程度 | 消极
Q:情感四元组(对象 | 观点 | 方面 | 极性)抽取任务(观点尽量短): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。]
A:个头 | 大 | 商品#大小 | 积极 & 口感 | 不错 | 商品#口感 | 积极
Q:情感三元组(对象 | 观点 | 极性)抽取任务(观点可以较长,补全null): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。]
A:个头 | 大 | 积极 & 口感 | 不错 | 积极 & null (花生) | 个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好 | 消极
Q:判断以下评论的情感极性: [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。]
A:中性
Q:情感二元组(方面 | 极性)抽取任务(方面选项: 价格#性价比/价格#折扣/价格#水平/食品#外观/食物#分量/食物#味道/食物#推荐): [个头大、口感不错,就是个别坏了的或者有烂掉口子刻意用泥土封着,这样做不好。]
A:食物#分量 | 积极 & 食物#味道 | 中性
Q:sentiment quadruples (target | opinion | aspect | polarity) extraction task : [The hot dogs are good , yes , but the reason to get over here is the fantastic pork croquette sandwich , perfect on its supermarket squishy bun .]
A:hot dogs | good | food#quality | pos & pork croquette sandwich | fantastic | food#quality | pos & bun | perfect | food#quality | pos
``` |