RepVGG / RepVGG-main /repvggplus.py
yuxi-liu-wired's picture
init
0decf42
# --------------------------------------------------------
# RepVGG: Making VGG-style ConvNets Great Again (https://openaccess.thecvf.com/content/CVPR2021/papers/Ding_RepVGG_Making_VGG-Style_ConvNets_Great_Again_CVPR_2021_paper.pdf)
# Github source: https://github.com/DingXiaoH/RepVGG
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from se_block import SEBlock
import torch
import numpy as np
def conv_bn_relu(in_channels, out_channels, kernel_size, stride, padding, groups=1):
result = nn.Sequential()
result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False))
result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
result.add_module('relu', nn.ReLU())
return result
def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
result = nn.Sequential()
result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False))
result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
return result
class RepVGGplusBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros',
deploy=False,
use_post_se=False):
super(RepVGGplusBlock, self).__init__()
self.deploy = deploy
self.groups = groups
self.in_channels = in_channels
assert kernel_size == 3
assert padding == 1
self.nonlinearity = nn.ReLU()
if use_post_se:
self.post_se = SEBlock(out_channels, internal_neurons=out_channels // 4)
else:
self.post_se = nn.Identity()
if deploy:
self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
else:
if out_channels == in_channels and stride == 1:
self.rbr_identity = nn.BatchNorm2d(num_features=out_channels)
else:
self.rbr_identity = None
self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups)
padding_11 = padding - kernel_size // 2
self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups)
def forward(self, x):
if self.deploy:
return self.post_se(self.nonlinearity(self.rbr_reparam(x)))
if self.rbr_identity is None:
id_out = 0
else:
id_out = self.rbr_identity(x)
out = self.rbr_dense(x) + self.rbr_1x1(x) + id_out
out = self.post_se(self.nonlinearity(out))
return out
# This func derives the equivalent kernel and bias in a DIFFERENTIABLE way.
# You can get the equivalent kernel and bias at any time and do whatever you want,
# for example, apply some penalties or constraints during training, just like you do to the other models.
# May be useful for quantization or pruning.
def get_equivalent_kernel_bias(self):
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
if kernel1x1 is None:
return 0
else:
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
def _fuse_bn_tensor(self, branch):
if branch is None:
return 0, 0
if isinstance(branch, nn.Sequential):
# For the 1x1 or 3x3 branch
kernel, running_mean, running_var, gamma, beta, eps = branch.conv.weight, branch.bn.running_mean, branch.bn.running_var, branch.bn.weight, branch.bn.bias, branch.bn.eps
else:
# For the identity branch
assert isinstance(branch, nn.BatchNorm2d)
if not hasattr(self, 'id_tensor'):
# Construct and store the identity kernel in case it is used multiple times
input_dim = self.in_channels // self.groups
kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
for i in range(self.in_channels):
kernel_value[i, i % input_dim, 1, 1] = 1
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
kernel, running_mean, running_var, gamma, beta, eps = self.id_tensor, branch.running_mean, branch.running_var, branch.weight, branch.bias, branch.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
def switch_to_deploy(self):
if hasattr(self, 'rbr_reparam'):
return
kernel, bias = self.get_equivalent_kernel_bias()
self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels,
out_channels=self.rbr_dense.conv.out_channels,
kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride,
padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation,
groups=self.rbr_dense.conv.groups, bias=True)
self.rbr_reparam.weight.data = kernel
self.rbr_reparam.bias.data = bias
self.__delattr__('rbr_dense')
self.__delattr__('rbr_1x1')
if hasattr(self, 'rbr_identity'):
self.__delattr__('rbr_identity')
if hasattr(self, 'id_tensor'):
self.__delattr__('id_tensor')
self.deploy = True
class RepVGGplusStage(nn.Module):
def __init__(self, in_planes, planes, num_blocks, stride, use_checkpoint, use_post_se=False, deploy=False):
super().__init__()
strides = [stride] + [1] * (num_blocks - 1)
blocks = []
self.in_planes = in_planes
for stride in strides:
cur_groups = 1
blocks.append(RepVGGplusBlock(in_channels=self.in_planes, out_channels=planes, kernel_size=3,
stride=stride, padding=1, groups=cur_groups, deploy=deploy, use_post_se=use_post_se))
self.in_planes = planes
self.blocks = nn.ModuleList(blocks)
self.use_checkpoint = use_checkpoint
def forward(self, x):
for block in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(block, x)
else:
x = block(x)
return x
class RepVGGplus(nn.Module):
"""RepVGGplus
An official improved version of RepVGG (RepVGG: Making VGG-style ConvNets Great Again) <https://openaccess.thecvf.com/content/CVPR2021/papers/Ding_RepVGG_Making_VGG-Style_ConvNets_Great_Again_CVPR_2021_paper.pdf>`_.
Args:
num_blocks (tuple[int]): Depths of each stage.
num_classes (tuple[int]): Num of classes.
width_multiplier (tuple[float]): The width of the four stages
will be (64 * width_multiplier[0], 128 * width_multiplier[1], 256 * width_multiplier[2], 512 * width_multiplier[3]).
deploy (bool, optional): If True, the model will have the inference-time structure.
Default: False.
use_post_se (bool, optional): If True, the model will have Squeeze-and-Excitation blocks following the conv-ReLU units.
Default: False.
use_checkpoint (bool, optional): If True, the model will use torch.utils.checkpoint to save the GPU memory during training with acceptable slowdown.
Do not use it if you have sufficient GPU memory.
Default: False.
"""
def __init__(self,
num_blocks,
num_classes,
width_multiplier,
deploy=False,
use_post_se=False,
use_checkpoint=False):
super().__init__()
self.deploy = deploy
self.num_classes = num_classes
in_channels = min(64, int(64 * width_multiplier[0]))
stage_channels = [int(64 * width_multiplier[0]), int(128 * width_multiplier[1]), int(256 * width_multiplier[2]), int(512 * width_multiplier[3])]
self.stage0 = RepVGGplusBlock(in_channels=3, out_channels=in_channels, kernel_size=3, stride=2, padding=1, deploy=self.deploy, use_post_se=use_post_se)
self.stage1 = RepVGGplusStage(in_channels, stage_channels[0], num_blocks[0], stride=2, use_checkpoint=use_checkpoint, use_post_se=use_post_se, deploy=deploy)
self.stage2 = RepVGGplusStage(stage_channels[0], stage_channels[1], num_blocks[1], stride=2, use_checkpoint=use_checkpoint, use_post_se=use_post_se, deploy=deploy)
# split stage3 so that we can insert an auxiliary classifier
self.stage3_first = RepVGGplusStage(stage_channels[1], stage_channels[2], num_blocks[2] // 2, stride=2, use_checkpoint=use_checkpoint, use_post_se=use_post_se, deploy=deploy)
self.stage3_second = RepVGGplusStage(stage_channels[2], stage_channels[2], num_blocks[2] - num_blocks[2] // 2, stride=1, use_checkpoint=use_checkpoint, use_post_se=use_post_se, deploy=deploy)
self.stage4 = RepVGGplusStage(stage_channels[2], stage_channels[3], num_blocks[3], stride=2, use_checkpoint=use_checkpoint, use_post_se=use_post_se, deploy=deploy)
self.gap = nn.AdaptiveAvgPool2d(output_size=1)
self.flatten = nn.Flatten()
self.linear = nn.Linear(int(512 * width_multiplier[3]), num_classes)
# aux classifiers
if not self.deploy:
self.stage1_aux = self._build_aux_for_stage(self.stage1)
self.stage2_aux = self._build_aux_for_stage(self.stage2)
self.stage3_first_aux = self._build_aux_for_stage(self.stage3_first)
def _build_aux_for_stage(self, stage):
stage_out_channels = list(stage.blocks.children())[-1].rbr_dense.conv.out_channels
downsample = conv_bn_relu(in_channels=stage_out_channels, out_channels=stage_out_channels, kernel_size=3, stride=2, padding=1)
fc = nn.Linear(stage_out_channels, self.num_classes, bias=True)
return nn.Sequential(downsample, nn.AdaptiveAvgPool2d(1), nn.Flatten(), fc)
def forward(self, x):
out = self.stage0(x)
out = self.stage1(out)
stage1_aux = self.stage1_aux(out)
out = self.stage2(out)
stage2_aux = self.stage2_aux(out)
out = self.stage3_first(out)
stage3_first_aux = self.stage3_first_aux(out)
out = self.stage3_second(out)
out = self.stage4(out)
y = self.gap(out)
y = self.flatten(y)
y = self.linear(y)
return {
'main': y,
'stage1_aux': stage1_aux,
'stage2_aux': stage2_aux,
'stage3_first_aux': stage3_first_aux,
}
def switch_repvggplus_to_deploy(self):
for m in self.modules():
if hasattr(m, 'switch_to_deploy'):
m.switch_to_deploy()
if hasattr(self, 'stage1_aux'):
self.__delattr__('stage1_aux')
if hasattr(self, 'stage2_aux'):
self.__delattr__('stage2_aux')
if hasattr(self, 'stage3_first_aux'):
self.__delattr__('stage3_first_aux')
self.deploy = True
# torch.utils.checkpoint can reduce the memory consumption during training with a minor slowdown. Don't use it if you have sufficient GPU memory.
# Not sure whether it slows down inference
# pse for "post SE", which means using SE block after ReLU
def create_RepVGGplus_L2pse(deploy=False, use_checkpoint=False):
return RepVGGplus(num_blocks=[8, 14, 24, 1], num_classes=1000,
width_multiplier=[2.5, 2.5, 2.5, 5], deploy=deploy, use_post_se=True,
use_checkpoint=use_checkpoint)
# Will release more
repvggplus_func_dict = {
'RepVGGplus-L2pse': create_RepVGGplus_L2pse,
}
def create_RepVGGplus_by_name(name, deploy=False, use_checkpoint=False):
if 'plus' in name:
return repvggplus_func_dict[name](deploy=deploy, use_checkpoint=use_checkpoint)
else:
print('=================== Building the vanila RepVGG ===================')
from repvgg import get_RepVGG_func_by_name
return get_RepVGG_func_by_name(name)(deploy=deploy, use_checkpoint=use_checkpoint)
# Use this for converting a RepVGG model or a bigger model with RepVGG as its component
# Use like this
# model = create_RepVGG_A0(deploy=False)
# train model or load weights
# repvgg_model_convert(model, save_path='repvgg_deploy.pth')
# If you want to preserve the original model, call with do_copy=True
# ====================== for using RepVGG as the backbone of a bigger model, e.g., PSPNet, the pseudo code will be like
# train_backbone = create_RepVGG_B2(deploy=False)
# train_backbone.load_state_dict(torch.load('RepVGG-B2-train.pth'))
# train_pspnet = build_pspnet(backbone=train_backbone)
# segmentation_train(train_pspnet)
# deploy_pspnet = repvgg_model_convert(train_pspnet)
# segmentation_test(deploy_pspnet)
# ===================== example_pspnet.py shows an example
def repvgg_model_convert(model:torch.nn.Module, save_path=None, do_copy=True):
import copy
if do_copy:
model = copy.deepcopy(model)
for module in model.modules():
if hasattr(module, 'switch_to_deploy'):
module.switch_to_deploy()
if save_path is not None:
torch.save(model.state_dict(), save_path)
return model