--- license: mit language: - en base_model: - openai/clip-vit-large-patch14 tags: - art - style - clip - image - embedding - vit - model_hub_mixin - pytorch_model_hub_mixin --- ## Measuring Style Similarity in Diffusion Models Cloned from [learn2phoenix/CSD](https://github.com/learn2phoenix/CSD?tab=readme-ov-file). Their model (`csd-vit-l.pth`) downloaded from their [Google Drive](https://drive.google.com/file/d/1FX0xs8p-C7Ob-h5Y4cUhTeOepHzXv_46/view?usp=sharing). The original Git Repo is in the `CSD` folder. ## Model architecture The model CSD ("contrastive style descriptor") is initialized from the image encoder part of [openai/clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14). Let $f$ be the function implemented by the image encoder. $f$ is implemented as a vision Transformer, that takes an image, and converts it into a $1024$-dimensional real-valued vector. This is then followed by a single matrix ("projection matrix") of dimensions $1024 \times 768$, converting it to a CLIP-embedding vector. Now, remove the projection matrix. This gives us $g: \text{Image} \to \R^{1024}$. The output from $g$ is the `feature vector`. Now, add in two more projection matrices of dimensions $1024 \times 768$. The output from one is the `style vector` and the other is the `content vector`. All parameters of the resulting model was then finetuned by [tadeephuy/GradientReversal](https://github.com/tadeephuy/GradientReversal) for content style disentanglement, resulting in the final model. The original paper actually stated that they trained *two* models, and one of them was based on ViT-B, but they did not release it. The model takes as input real-valued tensors. To preprocess images, use the CLIP preprocessor. That is, use `_, preprocess = clip.load("ViT-L/14")`. Explicitly, the preprocessor performs the following operation: ```python def _transform(n_px): return Compose([ Resize(n_px, interpolation=BICUBIC), CenterCrop(n_px), _convert_image_to_rgb, ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) ``` See the documentation for [`CLIPImageProcessor` for details](https://huggingface.co./docs/transformers/model_doc/clip#transformers.CLIPImageProcessor). Also, despite the names `style vector` and `content vector`, I have noticed by visual inspection that both are basically equally good for style embedding. I don't know why, but I guess that's life? (No, it's actually not supposed to happen. I don't know why it didn't really disentangle style and content. Maybe that's a question for a small research paper.) You can see for yourself by changing the line `style_output = output["style_output"].squeeze(0)` to `style_output = output["content_output"].squeeze(0)` in the demo. The resulting t-SNE is still clustering by style, to my eyes equally well. ## How to use it ### Quickstart Go to `examples` and run the `example.ipynb` notebook, then run `tsne_visualization.py`. It will say something like `Running on http://127.0.0.1:49860`. Click that link and enjoy the pretty interactive picture. ![](examples/style_embedding_tsne.png) ### Loading the model ```python import copy import torch import torch.nn as nn import clip from transformers import CLIPProcessor from huggingface_hub import PyTorchModelHubMixin from transformers import PretrainedConfig class CSDCLIPConfig(PretrainedConfig): model_type = "csd_clip" def __init__( self, name="csd_large", embedding_dim=1024, feature_dim=1024, content_dim=768, style_dim=768, content_proj_head="default", **kwargs ): super().__init__(**kwargs) self.name = name self.embedding_dim = embedding_dim self.content_proj_head = content_proj_head self.task_specific_params = None # Add this line class CSD_CLIP(nn.Module, PyTorchModelHubMixin): """backbone + projection head""" def __init__(self, name='vit_large',content_proj_head='default'): super(CSD_CLIP, self).__init__() self.content_proj_head = content_proj_head if name == 'vit_large': clipmodel, _ = clip.load("ViT-L/14") self.backbone = clipmodel.visual self.embedding_dim = 1024 self.feature_dim = 1024 self.content_dim = 768 self.style_dim = 768 self.name = "csd_large" elif name == 'vit_base': clipmodel, _ = clip.load("ViT-B/16") self.backbone = clipmodel.visual self.embedding_dim = 768 self.feature_dim = 512 self.content_dim = 512 self.style_dim = 512 self.name = "csd_base" else: raise Exception('This model is not implemented') self.last_layer_style = copy.deepcopy(self.backbone.proj) self.last_layer_content = copy.deepcopy(self.backbone.proj) self.backbone.proj = None self.config = CSDCLIPConfig( name=self.name, embedding_dim=self.embedding_dim, feature_dim=self.feature_dim, content_dim=self.content_dim, style_dim=self.style_dim, content_proj_head=self.content_proj_head ) def get_config(self): return self.config.to_dict() @property def dtype(self): return self.backbone.conv1.weight.dtype @property def device(self): return next(self.parameters()).device def forward(self, input_data): feature = self.backbone(input_data) style_output = feature @ self.last_layer_style style_output = nn.functional.normalize(style_output, dim=1, p=2) content_output = feature @ self.last_layer_content content_output = nn.functional.normalize(content_output, dim=1, p=2) return feature, content_output, style_output device = 'cuda' if torch.cuda.is_available() else 'cpu' model = CSD_CLIP.from_pretrained("yuxi-liu-wired/CSD") model.to(device); ``` ### Loading the pipeline ```python import torch from transformers import Pipeline from typing import Union, List from PIL import Image class CSDCLIPPipeline(Pipeline): def __init__(self, model, processor, device=None): if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" super().__init__(model=model, tokenizer=None, device=device) self.processor = processor def _sanitize_parameters(self, **kwargs): return {}, {}, {} def preprocess(self, images): if isinstance(images, (str, Image.Image)): images = [images] processed = self.processor(images=images, return_tensors="pt", padding=True, truncation=True) return {k: v.to(self.device) for k, v in processed.items()} def _forward(self, model_inputs): pixel_values = model_inputs['pixel_values'].to(self.model.dtype) with torch.no_grad(): features, content_output, style_output = self.model(pixel_values) return {"features": features, "content_output": content_output, "style_output": style_output} def postprocess(self, model_outputs): return { "features": model_outputs["features"].cpu().numpy(), "content_output": model_outputs["content_output"].cpu().numpy(), "style_output": model_outputs["style_output"].cpu().numpy() } def __call__(self, images: Union[str, List[str], Image.Image, List[Image.Image]]): return super().__call__(images) processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") pipeline = CSDCLIPPipeline(model=model, processor=processor, device=device) ``` ### An example application First, load the model and the pipeline, as described above. Then, run the following to load the [yuxi-liu-wired/style-content-grid-SDXL](https://huggingface.co./datasets/yuxi-liu-wired/style-content-grid-SDXL) dataset, embed its style vectors, which is then written to a `parquet` output file. ```python import io from PIL import Image from datasets import load_dataset import pandas as pd from tqdm import tqdm def to_jpeg(image): buffered = io.BytesIO() if image.mode not in ("RGB"): image = image.convert("RGB") image.save(buffered, format='JPEG') return buffered.getvalue() def scale_image(image, max_resolution): if max(image.width, image.height) > max_resolution: image = image.resize((max_resolution, int(image.height * max_resolution / image.width))) return image def process_dataset(pipeline, dataset_name, dataset_size=900, max_resolution=192): dataset = load_dataset(dataset_name, split='train') dataset = dataset.select(range(dataset_size)) # Print the column names print("Dataset columns:", dataset.column_names) # Initialize lists to store results embeddings = [] jpeg_images = [] # Process each item in the dataset for item in tqdm(dataset, desc="Processing images"): try: img = item['image'] # If img is a string (file path), load the image if isinstance(img, str): img = Image.open(img) output = pipeline(img) style_output = output["style_output"].squeeze(0) img = scale_image(img, max_resolution) jpeg_img = to_jpeg(img) # Append results to lists embeddings.append(style_output) jpeg_images.append(jpeg_img) except Exception as e: print(f"Error processing item: {e}") # Create a DataFrame with the results df = pd.DataFrame({ 'embedding': embeddings, 'image': jpeg_images }) df.to_parquet('processed_dataset.parquet') print("Processing complete. Results saved to 'processed_dataset.parquet'") process_dataset(pipeline, "yuxi-liu-wired/style-content-grid-SDXL", dataset_size=900, max_resolution=192) ``` After that, you can go to `examples` and run `tsne_visualization.py` to get an interactive Dash app browser for the images. ![](examples/style_embedding_tsne.png)