# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch YuLanMini model.""" import json import math import re import warnings from collections import defaultdict from datetime import datetime from typing import Dict, List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, KLDivLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache, StaticCache from transformers.modeling_attn_mask_utils import (AttentionMaskConverter, _prepare_4d_attention_mask) from transformers.modeling_outputs import (BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast) from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import (ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13) from transformers.utils import (add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings) try: from torch.nn.attention.flex_attention import (create_block_mask, flex_attention) def causal(b, h, q_idx, kv_idx): return q_idx >= kv_idx block_mask = create_block_mask(causal, B=None, H=None, Q_LEN=4096, KV_LEN=4096) except ImportError: pass import os import sys sys.path.append('/home/u20140041/pretrain-mini/model') from configuration_yulanmini import YuLanMiniConfig # from unsloth.models.llama import CausalLM_fast_forward, LlamaModel_fast_forward_inference, LlamaAttention_fast_forward, LlamaModel_fast_forward, LlamaDecoderLayer_fast_forward if is_flash_attn_2_available(): from modeling_flash_attention_utils import _flash_attention_forward # from liger_kernel.transformers.experimental.embedding import LigerEmbedding import wandb from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss from liger_kernel.transformers.fused_linear_cross_entropy import \ LigerFusedLinearCrossEntropyLoss from liger_kernel.transformers.layer_norm import LigerLayerNorm from liger_kernel.transformers.rms_norm import LigerRMSNorm from liger_kernel.transformers.rope import liger_rotary_pos_emb from liger_kernel.transformers.swiglu import LigerSwiGLUMLP LOCAL_RANK = int(os.getenv("LOCAL_RANK", "0")) RANK = int(os.getenv("RANK", "0")) WORLD_SIZE = int(os.getenv("WORLD_SIZE", "1")) def print_rank0(*arg): if LOCAL_RANK == 0: print(*arg) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "YuLanMiniConfig" # https://github.com/unslothai/unsloth/blob/4e570be9ae4ced8cdc64e498125708e34942befc/unsloth/models/llama.py#L276 def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float): old_dtype = hidden.dtype hidden_fp32 = hidden.to(torch.float32) variance = hidden_fp32.square().mean(dim=-1, keepdim=True) hidden = (hidden_fp32 * (variance + eps).rsqrt()).to(old_dtype) hidden *= weight return hidden def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, min_dtype: float, cache_position: torch.Tensor, batch_size: int, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. min_dtype (`float`): The minimum value representable with the dtype `dtype`. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape( -1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone( ) # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, : mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, : mask_length] = causal_mask[:, :, :, : mask_length].masked_fill( padding_mask, min_dtype) return causal_mask class YuLanMiniRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6, casting_mode="llama", offset=0, init_fn="ones"): """ YuLanMiniRMSNorm is equivalent to T5LayerNorm """ super().__init__() if init_fn == "ones": self.weight = nn.Parameter(torch.ones(hidden_size)) elif init_fn == "zeros": self.weight = nn.Parameter(torch.zeros(hidden_size)) else: raise ValueError(f"Invalid init_fn: {init_fn}") self.variance_epsilon = eps self.offset = offset self.casting_mode = casting_mode def forward(self, hidden_states): old_dtype = hidden_states.dtype hidden_fp32 = hidden_states.to(torch.float32) variance = hidden_fp32.square().mean(dim=-1, keepdim=True) if self.casting_mode == "gemma": hidden = (hidden_fp32 * (variance + self.variance_epsilon).rsqrt()).to(old_dtype) hidden *= (self.weight + self.offset) elif self.casting_mode == "llama": hidden = (hidden_fp32 * (variance + self.variance_epsilon).rsqrt()) hidden *= (self.weight.float() + self.offset) hidden = hidden.to(old_dtype) else: raise ValueError(f"Invalid casting_mode: {self.casting_mode}") return hidden def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" ALL_LAYERNORM_LAYERS.append(YuLanMiniRMSNorm) ALL_LAYERNORM_LAYERS.append(LigerRMSNorm) class YuLanMiniRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=4096, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache(seq_len=max_position_embeddings, device="cuda" if device is None else device, dtype=torch.get_default_dtype()) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len inv_freq = 1.0 / (self.base**(torch.arange( 0, self.dim, 2, dtype=torch.int64, device="cpu").float() / self.dim)) t = torch.arange(self.max_seq_len_cached, device="cpu", dtype=torch.int64).float() freqs = torch.outer(t, inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype=dtype, device=device, non_blocking=True), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype=dtype, device=device, non_blocking=True), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) def get_cached(self, seq_len=None): return self.cos_cached, self.sin_cached class YuLanMiniLinearScalingRotaryEmbedding(YuLanMiniRotaryEmbedding): """YuLanMiniRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) class YuLanMiniDynamicNTKScalingRotaryEmbedding(YuLanMiniRotaryEmbedding): """YuLanMiniRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len if seq_len > self.max_position_embeddings: base = self.base * ((self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1))**(self.dim / (self.dim - 2)) inv_freq = 1.0 / (base**( torch.arange(0, self.dim, 2).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., :x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1, fast=False): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ if fast: return liger_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim) # cos = cos[position_ids].unsqueeze(unsqueeze_dim) # sin = sin[position_ids].unsqueeze(unsqueeze_dim) # q_embed = (q * cos) + (rotate_half(q) * sin) # k_embed = (k * cos) + (rotate_half(k) * sin) # return q_embed, k_embed # weired, its faster to run in float32 orig_dtype = k.dtype cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim] q_fp32 = q.to(dtype=torch.float32, device=q.device) k_fp32 = k.to(dtype=torch.float32, device=k.device) q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin) k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin) return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype) class YuLanMiniMLP(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.down_proj.__do_scale_tager__ = True self.gate_proj.__do_scale_tager_mu_dim_model__ = True self.up_proj.__do_scale_tager_mu_dim_model__ = True self.down_proj.__do_scale_tager_mu_ffn__ = True self.act_fn = ACT2FN[config.hidden_act] def forward(self, hidden_state): return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def get_hidden_states_logger(layer_idx, num_hidden_layers=None): if num_hidden_layers is None: log_interval = None else: log_interval = (num_hidden_layers - 1) // 5 @torch.no_grad() def log_hidden_states_decoder_layers(name, hidden_states): return if layer_idx % log_interval == 0 and wandb.run is not None and wandb.config.get("global_step", 0) % 23 == 0: layer = layer_idx // log_interval + 1 # wandb.log({f"hidden_states_var/{layer}_{name}": torch.var(hidden_states, dim=-1).mean().item()}, commit=False) # wandb.log({f"hidden_states_mean/{layer}_{name}": torch.mean(hidden_states, dim=-1).mean().item()}, commit=False) # wandb.log({f"hidden_states_rms/{layer}_{name}": torch.sqrt(torch.mean(hidden_states**2, dim=-1)).mean().item()}, commit=False) @torch.no_grad() def log_hidden_states_transformers(layer_idx, name, hidden_states): return if wandb.run is not None and wandb.config.get("global_step", 0) % 23 == 0: pass # wandb.log({f"hidden_states_var/{layer_idx}_{name}": torch.var(hidden_states, dim=-1).mean().item()}, commit=False) # wandb.log({f"hidden_states_mean/{layer_idx}_{name}": torch.mean(hidden_states, dim=-1).mean().item()}, commit=False) # wandb.log({f"hidden_states_rms/{layer_idx}_{name}": torch.sqrt(torch.mean(hidden_states**2, dim=-1)).mean().item()}, commit=False) if num_hidden_layers is None: return log_hidden_states_transformers else: return log_hidden_states_decoder_layers def get_od_weight_logger(layer_idx, num_hidden_layers=None): if num_hidden_layers is None: log_interval = None else: log_interval = (num_hidden_layers - 1) // 5 @torch.no_grad() def log_od_weight(name, weight_matrix): return if layer_idx % log_interval == 0 and wandb.run is not None and wandb.config.get("global_step", 0) % 23 == 0: layer = layer_idx // log_interval + 1 # wandb.log({f"weight_var/{layer}_{name}": torch.var(weight_matrix).item()}, commit=False) # wandb.log({f"weight_mean/{layer}_{name}": torch.mean(weight_matrix).item()}, commit=False) # wandb.log({f"weight_rms/{layer}_{name}": torch.sqrt(torch.mean(weight_matrix**2)).item()}, commit=False) return log_od_weight class StableLmLayerNormPerHead(nn.Module): def __init__(self, dim, num_heads, eps=1e-5, bias=False, use_liger=False): super().__init__() self.dim = dim self.num_heads = num_heads if use_liger: self.norms = nn.ModuleList([LigerLayerNorm(dim, eps=eps, bias=bias) for _ in range(self.num_heads)]) else: self.norms = nn.ModuleList([nn.LayerNorm(dim, eps=eps, bias=bias) for _ in range(self.num_heads)]) def forward(self, hidden_states: torch.Tensor): # Split along the num_heads axis to get per-head inputs # [batch_size, num_heads, seq_len, head_dim] -> [batch_size, 1, seq_len, head_dim] * num_heads states_per_heads = torch.split(hidden_states, 1, dim=1) # Normalize and merge the heads back together return torch.cat([norm(hidden_states) for norm, hidden_states in zip(self.norms, states_per_heads)], dim=1) class YuLanMiniAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". """ def __init__(self, config: YuLanMiniConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class.") self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.attention_dropout = config.attention_dropout if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads}).") self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.o_proj.__do_scale_tager__ = True self.q_proj.__do_scale_tager_mu_dim_model__=True self.k_proj.__do_scale_tager_mu_dim_model__=True self.v_proj.__do_scale_tager_mu_dim_model__=True self.o_proj.__do_scale_tager_mu_o__=True if self.config.wesar_weights: self.q_proj_alpha = nn.Parameter(torch.ones(1) * self.config.q_proj_alpha) self.k_proj_alpha = nn.Parameter(torch.ones(1) * self.config.k_proj_alpha) self.v_proj_alpha = nn.Parameter(torch.ones(1) * self.config.v_proj_alpha) self.o_proj_alpha = nn.Parameter(torch.ones(1) * self.config.o_proj_alpha) else: self.q_proj_alpha=1 self.k_proj_alpha=1 self.v_proj_alpha=1 self.o_proj_alpha=1 self.qk_layernorm = config.qk_layernorm if self.qk_layernorm: self.q_layernorm = StableLmLayerNormPerHead( self.head_dim, self.num_heads, eps=config.layer_norm_eps, use_liger=config.use_liger, ) self.k_layernorm = StableLmLayerNormPerHead( self.head_dim, self.num_key_value_heads, eps=config.layer_norm_eps, use_liger=config.use_liger, ) self.log_hidden_states = get_hidden_states_logger(self.layer_idx, self.config.num_hidden_layers) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.") bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) query_states = query_states * self.q_proj_alpha key_states = self.k_proj(hidden_states) key_states = key_states * self.k_proj_alpha value_states = self.v_proj(hidden_states) value_states = value_states * self.v_proj_alpha query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index.") kv_seq_len += past_key_value.get_usable_length( kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb( query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = { "sin": sin, "cos": cos, "cache_position": cache_position } # Specific to RoPE models key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose( 2, 3)) * math.sqrt(self.config.dim_model_base_attn) / self.head_dim if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}") if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, :key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to( query_states.dtype) self.log_hidden_states("1_attn_weights", attn_weights) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}") attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) attn_output = self.o_proj_alpha * attn_output if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_values class YuLanMiniFlashAttention2(YuLanMiniAttention): """ YuLanMini flash attention module. This module inherits from `YuLanMiniAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom config.max_window_layers layers. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10( ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) query_states = query_states * self.q_proj_alpha key_states = self.k_proj(hidden_states) key_states = key_states * self.k_proj_alpha value_states = self.v_proj(hidden_states) value_states = value_states * self.v_proj_alpha # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index.") kv_seq_len += past_key_value.get_usable_length( kv_seq_len, self.layer_idx) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids=position_ids, fast=True) if past_key_value is not None: # Activate slicing cache only if the config has a value `sliding_windows` attribute cache_has_contents = past_key_value.get_seq_length( self.layer_idx) > 0 if (getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window and cache_has_contents): slicing_tokens = 1 - self.config.sliding_window past_key = past_key_value[self.layer_idx][0] past_value = past_key_value[self.layer_idx][1] past_key = past_key[:, :, slicing_tokens:, :].contiguous() past_value = past_value[:, :, slicing_tokens:, :].contiguous() if past_key.shape[-2] != self.config.sliding_window - 1: raise ValueError( f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" f" {past_key.shape}") if attention_mask is not None: attention_mask = attention_mask[:, slicing_tokens:] attention_mask = torch.cat([ attention_mask, torch.ones_like(attention_mask[:, -1:]) ], dim=-1) cache_kwargs = { "sin": sin, "cos": cos, "cache_position": cache_position } # Specific to RoPE models key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, cache_kwargs) # todo: check if we need to repeat_kv # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) dropout_rate = 0.0 if not self.training else self.attention_dropout # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (YuLanMiniRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}.") query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) if (self.config.use_sliding_window and getattr(self.config, "sliding_window", None) is not None and self.layer_idx >= self.config.max_window_layers): sliding_window = self.config.sliding_window else: sliding_window = None attn_output, softmax_lse, _ = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, position_ids=position_ids, dropout=dropout_rate, sliding_window=sliding_window, is_causal=self.is_causal, softmax_scale = math.sqrt(self.config.dim_model_base_attn) / self.head_dim, use_top_left_mask=self._flash_attn_uses_top_left_mask, return_attn_probs=True, ) self.log_hidden_states("1_attn_weights", softmax_lse) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) attn_output = self.o_proj_alpha * attn_output return attn_output, None, past_key_value YULANMINI_ATTENTION_CLASSES = { "eager": YuLanMiniAttention, "flash_attention_2": YuLanMiniFlashAttention2, } class YuLanMiniDecoderLayer(nn.Module): def __init__(self, config: YuLanMiniConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.config = config if config.sliding_window and config._attn_implementation != "flash_attention_2": logger.warning_once( f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " "unexpected results may be encountered.") self.self_attn = YULANMINI_ATTENTION_CLASSES[ config._attn_implementation](config=config, layer_idx=layer_idx) self.layer_idx = layer_idx mlp_class = LigerSwiGLUMLP if config.use_liger else YuLanMiniMLP self.mlp = mlp_class(config) if self.config.wesar_weights: self.gate_up_proj_alpha = nn.Parameter(torch.tensor(1) * self.config.gate_up_proj_alpha) self.down_proj_alpha = nn.Parameter(torch.tensor(1) * self.config.down_proj_alpha) else: self.gate_up_proj_alpha=1 self.down_proj_alpha=1 rms_class = LigerRMSNorm if config.use_liger else YuLanMiniRMSNorm if config.rms_type == "llama": rms_kwargs = {"offset": 0, "init_fn": "ones", "casting_mode": "llama"} elif config.rms_type == "gemma": rms_kwargs = {"offset": 1, "init_fn": "zeros", "casting_mode": "gemma"} self.input_layernorm = rms_class(config.hidden_size, eps=config.rms_norm_eps, **rms_kwargs) if self.config.wesar_weights and self.config.use_norm_alpha: self.input_layernorm_alpha = nn.Parameter(torch.tensor(1) * self.config.input_layernorm_alpha) else: # print("哈哈,没有 use input_layernorm_alpha!!!!!!!!") self.input_layernorm_alpha = 1 self.post_attention_layernorm = rms_class(config.hidden_size, eps=config.rms_norm_eps, **rms_kwargs) if self.config.wesar_weights and self.config.use_norm_alpha : self.post_attention_layernorm_alpha = nn.Parameter(torch.tensor(1) * self.config.post_attention_layernorm_alpha) else: # print("哈哈,没有 use post_attention_layernorm_alpha!!!!!!!!") self.post_attention_layernorm_alpha = 1 def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ log_hidden_states = get_hidden_states_logger(self.layer_idx, self.config.num_hidden_layers) log_weights = get_od_weight_logger(self.layer_idx, self.config.num_hidden_layers) residual = hidden_states hidden_states = self.input_layernorm(hidden_states) * self.config.ln_scale * self.input_layernorm_alpha log_hidden_states("0_input_ln", hidden_states) hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) # log_hidden_states("2_attn", hidden_states) shrink = self.config.hidden_states_shrink if 0 <= shrink < 1: # hidden_states = hidden_states * shrink + hidden_states.detach() * (1 - shrink) hidden_states = hidden_states * shrink hidden_states = residual + hidden_states # log_hidden_states("3_attn_res", hidden_states) # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) * self.config.ln_scale * self.post_attention_layernorm_alpha log_hidden_states("4_post_ln", hidden_states) hidden_states = hidden_states * self.gate_up_proj_alpha hidden_states = self.mlp(hidden_states) hidden_states = hidden_states * self.down_proj_alpha # log_hidden_states("5_mlp", hidden_states) if 0 <= shrink < 1: # hidden_states = hidden_states * shrink + hidden_states.detach() * (1 - shrink) hidden_states = hidden_states * shrink hidden_states = residual + hidden_states # log_hidden_states("6_mlp_res", hidden_states) outputs = (hidden_states, ) # log_weights("down_weight", self.mlp.down_proj.weight) # log_weights("up_weight", self.mlp.up_proj.weight) # log_weights("gate_weight", self.mlp.up_proj.weight) # log_weights("o_proj_weight", self.self_attn.o_proj.weight) # log_weights("q_proj_weight", self.self_attn.q_proj.weight) # log_weights("k_proj_weight", self.self_attn.q_proj.weight) # log_weights("v_proj_weight", self.self_attn.q_proj.weight) # if output_attentions: # outputs += (self_attn_weights, ) return outputs YULANMINI_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`YuLanMiniConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare YuLanMini Model outputting raw hidden-states without any specific head on top.", YULANMINI_START_DOCSTRING, ) class YuLanMiniPreTrainedModel(PreTrainedModel): config_class = YuLanMiniConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["YuLanMiniDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = False _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): # reproduce版本 module_std = std if not self.config.model_reproduce == "transformer": if getattr(module, "__do_scale_tager__", False): module_std = module_std / self.config.init_scale_o # muparam版本 if getattr(module, "__do_scale_tager_mu_original__", False): module_std = module_std elif getattr(module, "__do_scale_tager_mu_o__", False): if self.config.model_reproduce == "cerebras": # module_std = module_std / math.sqrt(self.config.hidden_size / self.config.dim_model_base_init) if self.config.dim_model_base_init is not None: module_std = module_std / math.sqrt(2*(self.config.hidden_size / self.config.dim_model_base_init)*self.config.num_hidden_layers) else: module_std = module_std elif self.config.model_reproduce == "minicpm": if self.config.dim_model_base_init is not None: module_std = module_std / math.sqrt((self.config.hidden_size / self.config.dim_model_base_init)) else: module_std = module_std else: if self.config.dim_model_base_init is not None: module_std = module_std / math.sqrt((self.config.hidden_size / self.config.dim_model_base_init)) else: module_std = module_std elif getattr(module, "__do_scale_tager_mu_ffn__", False): # module_std = std / math.sqrt(self.config.intermediate_size / self.config.dim_ffn_base_init) if self.config.model_reproduce == "cerebras": if self.config.dim_model_base_init is not None: module_std = module_std / math.sqrt(2*(self.config.hidden_size / self.config.dim_model_base_init)*self.config.num_hidden_layers) else: module_std = module_std elif self.config.model_reproduce == "minicpm": if self.config.dim_model_base_init is not None: module_std = module_std / math.sqrt((self.config.hidden_size / self.config.dim_model_base_init)) else: module_std = module_std else: if self.config.dim_model_base_init is not None: module_std = module_std / math.sqrt((self.config.hidden_size / self.config.dim_model_base_init)) else: module_std = module_std elif getattr(module, "__do_scale_tager_mu_dim_model__", False): if self.config.dim_model_base_init is not None: module_std = module_std / math.sqrt(self.config.hidden_size / self.config.dim_model_base_init) else: module_std = module_std elif getattr(module, "__do_scale_tager_mu_dim_base_model__", False): module_std = module_std / math.sqrt(self.config.dim_model_base_lmh) else: module_std = module_std print(f"init {module} with std {module_std} ({module.__class__.__name__})") module.weight.data.normal_(mean=0.0, std=module_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module_std = getattr(module, "__std__", std) print(f"init {module} with std {module_std} ({module.__class__.__name__})") module.weight.data.normal_(mean=0.0, std=module_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() YULANMINI_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare YuLanMini Model outputting raw hidden-states without any specific head on top.", YULANMINI_START_DOCSTRING, ) class YuLanMiniModel(YuLanMiniPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YuLanMiniDecoderLayer`] Args: config: YuLanMiniConfig """ def __init__(self, config: YuLanMiniConfig): super().__init__(config) self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) # if self.config.wesar_weights and self.config.use_emb_alpha: # # self.embed_tokens_alpha = nn.Parameter(torch.tensor(1.0) * self.config.embed_tokens_alpha) # self.embed_tokens_alpha = 1 # else: self.embed_tokens_alpha = 1 if not self.config.tie_word_embeddings: self.embed_tokens.__std__ = 1.0 rms_class = LigerRMSNorm if config.use_liger else YuLanMiniRMSNorm if config.rms_type == "llama": rms_kwargs = {"offset": 0, "init_fn": "ones", "casting_mode": "llama"} elif config.rms_type == "gemma": rms_kwargs = {"offset": 1, "init_fn": "zeros", "casting_mode": "gemma"} if self.config.embedding_ln: ln_class = LigerLayerNorm if config.use_liger else nn.LayerNorm self.embedding_layernorm = ln_class(config.hidden_size, eps=config.layer_norm_eps, bias=False) elif self.config.embedding_rmsln: self.embedding_layernorm = rms_class(config.hidden_size, eps=config.rms_norm_eps, **rms_kwargs) self.layers = nn.ModuleList([ YuLanMiniDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers) ]) self._attn_implementation = config._attn_implementation self.norm = rms_class(config.hidden_size, eps=config.rms_norm_eps, **rms_kwargs) if self.config.wesar_weights and self.config.use_norm_alpha : self.norm_alpha = nn.Parameter(torch.tensor(1) * self.config.norm_alpha) else: # print("哈哈,没有 use norm_alpha!!!!!!!!") self.norm_alpha = 1 self._init_rope() self.gradient_checkpointing = True if self.config.wesar_weights: self.shrink_alpha = config.shrink_alpha else: self.shrink_alpha = 1 self.scale_emb = config.scale_emb self.log_hidden_states = get_hidden_states_logger(0, None) # Initialize weights and apply final processing self.post_init() def _init_rope(self): self.rope_theta = self.config.rope_theta self.max_position_embeddings = self.config.max_position_embeddings self.hidden_size = self.config.hidden_size self.num_heads = self.config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads if self.config.rope_scaling is None: self.rotary_emb = YuLanMiniRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: # https://huggingface.co./docs/text-generation-inference/basic_tutorials/preparing_model#rope-scaling scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] if scaling_type == "linear": self.rotary_emb = YuLanMiniLinearScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "dynamic": self.rotary_emb = YuLanMiniDynamicNTKScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(YULANMINI_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = (output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = True if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False use_legacy_cache = False if use_cache and not isinstance(past_key_values, Cache) and not self.training: use_legacy_cache = True past_key_values = DynamicCache.from_legacy_cache(past_key_values) logger.warning_once( "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " "Please use an appropriate `Cache` class (https://huggingface.co./docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" ) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.scale_emb inputs_embeds = inputs_embeds * self.embed_tokens_alpha self.log_hidden_states(0, "0_embed", inputs_embeds) if 0 <= self.shrink_alpha < 1: shrink_alpha = self.shrink_alpha inputs_embeds = inputs_embeds * shrink_alpha + inputs_embeds.detach() * (1 - shrink_alpha) self.log_hidden_states(0, "1_shrink", inputs_embeds) if self.config.embedding_ln: inputs_embeds = self.embedding_layernorm(inputs_embeds) self.log_hidden_states(0, "2_embln", inputs_embeds) elif self.config.embedding_rmsln: inputs_embeds = self.embedding_layernorm(inputs_embeds) * self.config.ln_scale self.log_hidden_states(0, "2_embln", inputs_embeds) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length( ) if past_key_values is not None else 0 cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions) hidden_states = inputs_embeds position_embeddings = self.rotary_emb(hidden_states, hidden_states.shape[1]) # Warning: ignore the position_ids # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states, ) if self.gradient_checkpointing and self.training and idx % self.config.gradient_checkpointing_step != 0: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[ 2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1], ) old_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) hidden_states = self.norm(hidden_states) * self.config.ln_scale * self.norm_alpha hidden_states = hidden_states.to(old_dtype) self.log_hidden_states(7, "0_norm", hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states, ) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache( ) if use_legacy_cache else next_decoder_cache return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length( ) if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_length() else: target_length = (attention_mask.shape[-1] if isinstance( attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, min_dtype=min_dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if (self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended( causal_mask, min_dtype) return causal_mask class YuLanMiniModelForCausalLM(YuLanMiniPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = YuLanMiniModel(config) self.config = config self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) if self.config.wesar_weights: self.lm_head_alpha = nn.Parameter(torch.tensor(1) * self.config.lm_head_alpha) else: self.lm_head_alpha = 1 # Initialize weights and apply final processing self.lm_head.__do_scale_tager_mu_dim_base_model__ = not self.config.tie_word_embeddings self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(YULANMINI_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, teacher_logits: list = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, subset: Optional[List[str]] = None, idx: Optional[List[int]] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, YuLanMiniForCausalLM >>> model = YuLanMiniForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = self.config.output_attentions output_hidden_states = self.config.output_hidden_states return_dict = True # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] logits = None loss = None if labels is not None: # Shift so that tokens < n predict n if self.config.dim_model_base_logits is not None and self.config.hidden_size != self.config.dim_model_base_logits: hidden_states = hidden_states / (self.config.hidden_size / self.config.dim_model_base_logits) hidden_states = hidden_states * self.lm_head_alpha shift_hidden_states = hidden_states[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size) shift_labels = shift_labels.view(-1) lce = LigerFusedLinearCrossEntropyLoss(lse_square_scale=self.config.z_loss) loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )