|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch YuLanMini model.""" |
|
import json |
|
import math |
|
import re |
|
import warnings |
|
from collections import defaultdict |
|
from datetime import datetime |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, KLDivLoss, MSELoss |
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
from transformers.modeling_attn_mask_utils import (AttentionMaskConverter, |
|
_prepare_4d_attention_mask) |
|
from transformers.modeling_outputs import (BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import (ALL_LAYERNORM_LAYERS, |
|
is_torch_greater_or_equal_than_1_13) |
|
from transformers.utils import (add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, logging, |
|
replace_return_docstrings) |
|
|
|
try: |
|
from torch.nn.attention.flex_attention import (create_block_mask, |
|
flex_attention) |
|
|
|
def causal(b, h, q_idx, kv_idx): |
|
return q_idx >= kv_idx |
|
|
|
block_mask = create_block_mask(causal, B=None, H=None, Q_LEN=4096, KV_LEN=4096) |
|
except ImportError: |
|
pass |
|
import os |
|
import sys |
|
|
|
sys.path.append('/home/u20140041/pretrain-mini/model') |
|
from configuration_yulanmini import YuLanMiniConfig |
|
|
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from modeling_flash_attention_utils import _flash_attention_forward |
|
|
|
|
|
import wandb |
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss |
|
from liger_kernel.transformers.fused_linear_cross_entropy import \ |
|
LigerFusedLinearCrossEntropyLoss |
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm |
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm |
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb |
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP |
|
|
|
LOCAL_RANK = int(os.getenv("LOCAL_RANK", "0")) |
|
RANK = int(os.getenv("RANK", "0")) |
|
WORLD_SIZE = int(os.getenv("WORLD_SIZE", "1")) |
|
|
|
|
|
def print_rank0(*arg): |
|
if LOCAL_RANK == 0: |
|
print(*arg) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "YuLanMiniConfig" |
|
|
|
|
|
|
|
def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float): |
|
old_dtype = hidden.dtype |
|
hidden_fp32 = hidden.to(torch.float32) |
|
variance = hidden_fp32.square().mean(dim=-1, keepdim=True) |
|
hidden = (hidden_fp32 * (variance + eps).rsqrt()).to(old_dtype) |
|
hidden *= weight |
|
return hidden |
|
|
|
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
min_dtype: float, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
device (`torch.device`): |
|
The device to plcae the 4D attention mask on. |
|
min_dtype (`float`): |
|
The minimum value representable with the dtype `dtype`. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full((sequence_length, target_length), |
|
fill_value=min_dtype, |
|
dtype=dtype, |
|
device=device) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, |
|
device=device) > cache_position.reshape( |
|
-1, 1) |
|
causal_mask = causal_mask[None, |
|
None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone( |
|
) |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, : |
|
mask_length] + attention_mask[:, None, |
|
None, :] |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, : |
|
mask_length] = causal_mask[:, :, :, : |
|
mask_length].masked_fill( |
|
padding_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
|
|
class YuLanMiniRMSNorm(nn.Module): |
|
|
|
def __init__(self, hidden_size, eps=1e-6, casting_mode="llama", offset=0, init_fn="ones"): |
|
""" |
|
YuLanMiniRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
if init_fn == "ones": |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
elif init_fn == "zeros": |
|
self.weight = nn.Parameter(torch.zeros(hidden_size)) |
|
else: |
|
raise ValueError(f"Invalid init_fn: {init_fn}") |
|
self.variance_epsilon = eps |
|
self.offset = offset |
|
self.casting_mode = casting_mode |
|
|
|
def forward(self, hidden_states): |
|
old_dtype = hidden_states.dtype |
|
hidden_fp32 = hidden_states.to(torch.float32) |
|
variance = hidden_fp32.square().mean(dim=-1, keepdim=True) |
|
if self.casting_mode == "gemma": |
|
hidden = (hidden_fp32 * (variance + self.variance_epsilon).rsqrt()).to(old_dtype) |
|
hidden *= (self.weight + self.offset) |
|
elif self.casting_mode == "llama": |
|
hidden = (hidden_fp32 * (variance + self.variance_epsilon).rsqrt()) |
|
hidden *= (self.weight.float() + self.offset) |
|
hidden = hidden.to(old_dtype) |
|
else: |
|
raise ValueError(f"Invalid casting_mode: {self.casting_mode}") |
|
return hidden |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(YuLanMiniRMSNorm) |
|
ALL_LAYERNORM_LAYERS.append(LigerRMSNorm) |
|
|
|
|
|
class YuLanMiniRotaryEmbedding(nn.Module): |
|
|
|
def __init__(self, |
|
dim, |
|
max_position_embeddings=4096, |
|
base=10000, |
|
device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
|
|
|
|
self._set_cos_sin_cache(seq_len=max_position_embeddings, |
|
device="cuda" if device is None else device, |
|
dtype=torch.get_default_dtype()) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
|
|
self.max_seq_len_cached = seq_len |
|
inv_freq = 1.0 / (self.base**(torch.arange( |
|
0, self.dim, 2, dtype=torch.int64, device="cpu").float() / |
|
self.dim)) |
|
t = torch.arange(self.max_seq_len_cached, |
|
device="cpu", |
|
dtype=torch.int64).float() |
|
|
|
freqs = torch.outer(t, inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", |
|
emb.cos().to(dtype=dtype, |
|
device=device, |
|
non_blocking=True), |
|
persistent=False) |
|
self.register_buffer("sin_cached", |
|
emb.sin().to(dtype=dtype, |
|
device=device, |
|
non_blocking=True), |
|
persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, |
|
device=x.device, |
|
dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
def get_cached(self, seq_len=None): |
|
return self.cos_cached, self.sin_cached |
|
|
|
|
|
class YuLanMiniLinearScalingRotaryEmbedding(YuLanMiniRotaryEmbedding): |
|
"""YuLanMiniRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, |
|
dim, |
|
max_position_embeddings=2048, |
|
base=10000, |
|
device=None, |
|
scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, |
|
device=device, |
|
dtype=torch.int64).type_as(self.inv_freq) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", |
|
emb.cos().to(dtype), |
|
persistent=False) |
|
self.register_buffer("sin_cached", |
|
emb.sin().to(dtype), |
|
persistent=False) |
|
|
|
|
|
class YuLanMiniDynamicNTKScalingRotaryEmbedding(YuLanMiniRotaryEmbedding): |
|
"""YuLanMiniRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" |
|
|
|
def __init__(self, |
|
dim, |
|
max_position_embeddings=2048, |
|
base=10000, |
|
device=None, |
|
scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ((self.scaling_factor * seq_len / |
|
self.max_position_embeddings) - |
|
(self.scaling_factor - 1))**(self.dim / |
|
(self.dim - 2)) |
|
inv_freq = 1.0 / (base**( |
|
torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, |
|
device=device, |
|
dtype=torch.int64).type_as(self.inv_freq) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
|
self.register_buffer("cos_cached", |
|
emb.cos().to(dtype), |
|
persistent=False) |
|
self.register_buffer("sin_cached", |
|
emb.sin().to(dtype), |
|
persistent=False) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., :x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, |
|
k, |
|
cos, |
|
sin, |
|
position_ids, |
|
unsqueeze_dim=1, |
|
fast=False): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
if fast: |
|
return liger_rotary_pos_emb(q, k, cos, sin, position_ids, |
|
unsqueeze_dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
orig_dtype = k.dtype |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_fp32 = q.to(dtype=torch.float32, device=q.device) |
|
k_fp32 = k.to(dtype=torch.float32, device=k.device) |
|
q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin) |
|
k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin) |
|
return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype) |
|
|
|
|
|
class YuLanMiniMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.down_proj.__do_scale_tager__ = True |
|
|
|
self.gate_proj.__do_scale_tager_mu_dim_model__ = True |
|
self.up_proj.__do_scale_tager_mu_dim_model__ = True |
|
self.down_proj.__do_scale_tager_mu_ffn__ = True |
|
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_state): |
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state)) |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, |
|
None, :, :].expand(batch, |
|
num_key_value_heads, |
|
n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, |
|
head_dim) |
|
|
|
|
|
def get_hidden_states_logger(layer_idx, num_hidden_layers=None): |
|
if num_hidden_layers is None: |
|
log_interval = None |
|
else: |
|
log_interval = (num_hidden_layers - 1) // 5 |
|
|
|
@torch.no_grad() |
|
def log_hidden_states_decoder_layers(name, hidden_states): |
|
return |
|
if layer_idx % log_interval == 0 and wandb.run is not None and wandb.config.get("global_step", 0) % 23 == 0: |
|
layer = layer_idx // log_interval + 1 |
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def log_hidden_states_transformers(layer_idx, name, hidden_states): |
|
return |
|
if wandb.run is not None and wandb.config.get("global_step", 0) % 23 == 0: |
|
pass |
|
|
|
|
|
|
|
|
|
if num_hidden_layers is None: |
|
return log_hidden_states_transformers |
|
else: |
|
return log_hidden_states_decoder_layers |
|
|
|
def get_od_weight_logger(layer_idx, num_hidden_layers=None): |
|
if num_hidden_layers is None: |
|
log_interval = None |
|
else: |
|
log_interval = (num_hidden_layers - 1) // 5 |
|
|
|
@torch.no_grad() |
|
def log_od_weight(name, weight_matrix): |
|
return |
|
if layer_idx % log_interval == 0 and wandb.run is not None and wandb.config.get("global_step", 0) % 23 == 0: |
|
layer = layer_idx // log_interval + 1 |
|
|
|
|
|
|
|
|
|
return log_od_weight |
|
|
|
|
|
class StableLmLayerNormPerHead(nn.Module): |
|
def __init__(self, dim, num_heads, eps=1e-5, bias=False, use_liger=False): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
if use_liger: |
|
self.norms = nn.ModuleList([LigerLayerNorm(dim, eps=eps, bias=bias) for _ in range(self.num_heads)]) |
|
else: |
|
self.norms = nn.ModuleList([nn.LayerNorm(dim, eps=eps, bias=bias) for _ in range(self.num_heads)]) |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
|
|
|
|
states_per_heads = torch.split(hidden_states, 1, dim=1) |
|
|
|
return torch.cat([norm(hidden_states) for norm, hidden_states in zip(self.norms, states_per_heads)], dim=1) |
|
|
|
|
|
class YuLanMiniAttention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, |
|
config: YuLanMiniConfig, |
|
layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class.") |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
self.attention_dropout = config.attention_dropout |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads}).") |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, |
|
self.hidden_size, |
|
bias=False) |
|
self.o_proj.__do_scale_tager__ = True |
|
self.q_proj.__do_scale_tager_mu_dim_model__=True |
|
self.k_proj.__do_scale_tager_mu_dim_model__=True |
|
self.v_proj.__do_scale_tager_mu_dim_model__=True |
|
self.o_proj.__do_scale_tager_mu_o__=True |
|
if self.config.wesar_weights: |
|
self.q_proj_alpha = nn.Parameter(torch.ones(1) * self.config.q_proj_alpha) |
|
self.k_proj_alpha = nn.Parameter(torch.ones(1) * self.config.k_proj_alpha) |
|
self.v_proj_alpha = nn.Parameter(torch.ones(1) * self.config.v_proj_alpha) |
|
self.o_proj_alpha = nn.Parameter(torch.ones(1) * self.config.o_proj_alpha) |
|
else: |
|
self.q_proj_alpha=1 |
|
self.k_proj_alpha=1 |
|
self.v_proj_alpha=1 |
|
self.o_proj_alpha=1 |
|
|
|
|
|
self.qk_layernorm = config.qk_layernorm |
|
if self.qk_layernorm: |
|
self.q_layernorm = StableLmLayerNormPerHead( |
|
self.head_dim, self.num_heads, eps=config.layer_norm_eps, use_liger=config.use_liger, |
|
) |
|
self.k_layernorm = StableLmLayerNormPerHead( |
|
self.head_dim, self.num_key_value_heads, eps=config.layer_norm_eps, use_liger=config.use_liger, |
|
) |
|
|
|
self.log_hidden_states = get_hidden_states_logger(self.layer_idx, self.config.num_hidden_layers) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, |
|
self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], |
|
Optional[Tuple[torch.Tensor]]]: |
|
logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.") |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states * self.q_proj_alpha |
|
key_states = self.k_proj(hidden_states) |
|
key_states = key_states * self.k_proj_alpha |
|
value_states = self.v_proj(hidden_states) |
|
value_states = value_states * self.v_proj_alpha |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, |
|
self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, |
|
self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, |
|
self.head_dim).transpose(1, 2) |
|
|
|
if self.qk_layernorm: |
|
query_states = self.q_layernorm(query_states) |
|
key_states = self.k_layernorm(key_states) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index.") |
|
kv_seq_len += past_key_value.get_usable_length( |
|
kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb( |
|
query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = { |
|
"sin": sin, |
|
"cos": cos, |
|
"cache_position": cache_position |
|
} |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose( |
|
2, 3)) * math.sqrt(self.config.dim_model_base_attn) / self.head_dim |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}") |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, :key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, |
|
dim=-1, |
|
dtype=torch.float32).to( |
|
query_states.dtype) |
|
self.log_hidden_states("1_attn_weights", attn_weights) |
|
attn_weights = nn.functional.dropout(attn_weights, |
|
p=self.attention_dropout, |
|
training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}") |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
attn_output = self.o_proj_alpha * attn_output |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_values |
|
|
|
class YuLanMiniFlashAttention2(YuLanMiniAttention): |
|
""" |
|
YuLanMini flash attention module. This module inherits from `YuLanMiniAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom |
|
config.max_window_layers layers. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10( |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], |
|
Optional[Tuple[torch.Tensor]]]: |
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
query_states = query_states * self.q_proj_alpha |
|
key_states = self.k_proj(hidden_states) |
|
key_states = key_states * self.k_proj_alpha |
|
value_states = self.v_proj(hidden_states) |
|
value_states = value_states * self.v_proj_alpha |
|
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, |
|
self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, |
|
self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, |
|
self.head_dim).transpose(1, 2) |
|
|
|
if self.qk_layernorm: |
|
query_states = self.q_layernorm(query_states) |
|
key_states = self.k_layernorm(key_states) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index.") |
|
kv_seq_len += past_key_value.get_usable_length( |
|
kv_seq_len, self.layer_idx) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, |
|
key_states, |
|
cos, |
|
sin, |
|
position_ids=position_ids, |
|
fast=True) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_has_contents = past_key_value.get_seq_length( |
|
self.layer_idx) > 0 |
|
if (getattr(self.config, "sliding_window", None) is not None |
|
and kv_seq_len > self.config.sliding_window |
|
and cache_has_contents): |
|
slicing_tokens = 1 - self.config.sliding_window |
|
|
|
past_key = past_key_value[self.layer_idx][0] |
|
past_value = past_key_value[self.layer_idx][1] |
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous() |
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous() |
|
|
|
if past_key.shape[-2] != self.config.sliding_window - 1: |
|
raise ValueError( |
|
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" |
|
f" {past_key.shape}") |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, slicing_tokens:] |
|
attention_mask = torch.cat([ |
|
attention_mask, |
|
torch.ones_like(attention_mask[:, -1:]) |
|
], |
|
dim=-1) |
|
|
|
cache_kwargs = { |
|
"sin": sin, |
|
"cos": cos, |
|
"cache_position": cache_position |
|
} |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}.") |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
if (self.config.use_sliding_window |
|
and getattr(self.config, "sliding_window", None) is not None |
|
and self.layer_idx >= self.config.max_window_layers): |
|
sliding_window = self.config.sliding_window |
|
else: |
|
sliding_window = None |
|
|
|
attn_output, softmax_lse, _ = _flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
position_ids=position_ids, |
|
dropout=dropout_rate, |
|
sliding_window=sliding_window, |
|
is_causal=self.is_causal, |
|
softmax_scale = math.sqrt(self.config.dim_model_base_attn) / self.head_dim, |
|
use_top_left_mask=self._flash_attn_uses_top_left_mask, |
|
return_attn_probs=True, |
|
) |
|
self.log_hidden_states("1_attn_weights", softmax_lse) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, |
|
self.hidden_size).contiguous() |
|
|
|
attn_output = self.o_proj(attn_output) |
|
attn_output = self.o_proj_alpha * attn_output |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
YULANMINI_ATTENTION_CLASSES = { |
|
"eager": YuLanMiniAttention, |
|
"flash_attention_2": YuLanMiniFlashAttention2, |
|
} |
|
|
|
|
|
class YuLanMiniDecoderLayer(nn.Module): |
|
|
|
def __init__(self, config: YuLanMiniConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.config = config |
|
|
|
if config.sliding_window and config._attn_implementation != "flash_attention_2": |
|
logger.warning_once( |
|
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " |
|
"unexpected results may be encountered.") |
|
self.self_attn = YULANMINI_ATTENTION_CLASSES[ |
|
config._attn_implementation](config=config, layer_idx=layer_idx) |
|
self.layer_idx = layer_idx |
|
|
|
mlp_class = LigerSwiGLUMLP if config.use_liger else YuLanMiniMLP |
|
self.mlp = mlp_class(config) |
|
if self.config.wesar_weights: |
|
self.gate_up_proj_alpha = nn.Parameter(torch.tensor(1) * self.config.gate_up_proj_alpha) |
|
self.down_proj_alpha = nn.Parameter(torch.tensor(1) * self.config.down_proj_alpha) |
|
else: |
|
self.gate_up_proj_alpha=1 |
|
self.down_proj_alpha=1 |
|
|
|
rms_class = LigerRMSNorm if config.use_liger else YuLanMiniRMSNorm |
|
if config.rms_type == "llama": |
|
rms_kwargs = {"offset": 0, "init_fn": "ones", "casting_mode": "llama"} |
|
elif config.rms_type == "gemma": |
|
rms_kwargs = {"offset": 1, "init_fn": "zeros", "casting_mode": "gemma"} |
|
self.input_layernorm = rms_class(config.hidden_size, eps=config.rms_norm_eps, **rms_kwargs) |
|
if self.config.wesar_weights and self.config.use_norm_alpha: |
|
self.input_layernorm_alpha = nn.Parameter(torch.tensor(1) * self.config.input_layernorm_alpha) |
|
else: |
|
|
|
self.input_layernorm_alpha = 1 |
|
self.post_attention_layernorm = rms_class(config.hidden_size, eps=config.rms_norm_eps, **rms_kwargs) |
|
if self.config.wesar_weights and self.config.use_norm_alpha : |
|
self.post_attention_layernorm_alpha = nn.Parameter(torch.tensor(1) * self.config.post_attention_layernorm_alpha) |
|
else: |
|
|
|
self.post_attention_layernorm_alpha = 1 |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, |
|
torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
|
query_sequence_length, key_sequence_length)` if default attention is used. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
|
|
log_hidden_states = get_hidden_states_logger(self.layer_idx, self.config.num_hidden_layers) |
|
log_weights = get_od_weight_logger(self.layer_idx, self.config.num_hidden_layers) |
|
|
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) * self.config.ln_scale * self.input_layernorm_alpha |
|
log_hidden_states("0_input_ln", hidden_states) |
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
|
|
shrink = self.config.hidden_states_shrink |
|
if 0 <= shrink < 1: |
|
|
|
hidden_states = hidden_states * shrink |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) * self.config.ln_scale * self.post_attention_layernorm_alpha |
|
log_hidden_states("4_post_ln", hidden_states) |
|
hidden_states = hidden_states * self.gate_up_proj_alpha |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = hidden_states * self.down_proj_alpha |
|
|
|
|
|
if 0 <= shrink < 1: |
|
|
|
hidden_states = hidden_states * shrink |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states, ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return outputs |
|
|
|
|
|
YULANMINI_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`YuLanMiniConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare YuLanMini Model outputting raw hidden-states without any specific head on top.", |
|
YULANMINI_START_DOCSTRING, |
|
) |
|
class YuLanMiniPreTrainedModel(PreTrainedModel): |
|
config_class = YuLanMiniConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["YuLanMiniDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = False |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
|
|
module_std = std |
|
if not self.config.model_reproduce == "transformer": |
|
if getattr(module, "__do_scale_tager__", False): |
|
module_std = module_std / self.config.init_scale_o |
|
|
|
|
|
if getattr(module, "__do_scale_tager_mu_original__", False): |
|
module_std = module_std |
|
elif getattr(module, "__do_scale_tager_mu_o__", False): |
|
if self.config.model_reproduce == "cerebras": |
|
|
|
if self.config.dim_model_base_init is not None: |
|
module_std = module_std / math.sqrt(2*(self.config.hidden_size / self.config.dim_model_base_init)*self.config.num_hidden_layers) |
|
else: |
|
module_std = module_std |
|
elif self.config.model_reproduce == "minicpm": |
|
if self.config.dim_model_base_init is not None: |
|
module_std = module_std / math.sqrt((self.config.hidden_size / self.config.dim_model_base_init)) |
|
else: |
|
module_std = module_std |
|
else: |
|
if self.config.dim_model_base_init is not None: |
|
module_std = module_std / math.sqrt((self.config.hidden_size / self.config.dim_model_base_init)) |
|
else: |
|
module_std = module_std |
|
elif getattr(module, "__do_scale_tager_mu_ffn__", False): |
|
|
|
if self.config.model_reproduce == "cerebras": |
|
if self.config.dim_model_base_init is not None: |
|
module_std = module_std / math.sqrt(2*(self.config.hidden_size / self.config.dim_model_base_init)*self.config.num_hidden_layers) |
|
else: |
|
module_std = module_std |
|
|
|
elif self.config.model_reproduce == "minicpm": |
|
if self.config.dim_model_base_init is not None: |
|
module_std = module_std / math.sqrt((self.config.hidden_size / self.config.dim_model_base_init)) |
|
else: |
|
module_std = module_std |
|
else: |
|
if self.config.dim_model_base_init is not None: |
|
module_std = module_std / math.sqrt((self.config.hidden_size / self.config.dim_model_base_init)) |
|
else: |
|
module_std = module_std |
|
elif getattr(module, "__do_scale_tager_mu_dim_model__", False): |
|
if self.config.dim_model_base_init is not None: |
|
module_std = module_std / math.sqrt(self.config.hidden_size / self.config.dim_model_base_init) |
|
else: |
|
module_std = module_std |
|
elif getattr(module, "__do_scale_tager_mu_dim_base_model__", False): |
|
module_std = module_std / math.sqrt(self.config.dim_model_base_lmh) |
|
else: |
|
module_std = module_std |
|
|
|
print(f"init {module} with std {module_std} ({module.__class__.__name__})") |
|
module.weight.data.normal_(mean=0.0, std=module_std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
elif isinstance(module, nn.Embedding): |
|
module_std = getattr(module, "__std__", std) |
|
print(f"init {module} with std {module_std} ({module.__class__.__name__})") |
|
module.weight.data.normal_(mean=0.0, std=module_std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
YULANMINI_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare YuLanMini Model outputting raw hidden-states without any specific head on top.", |
|
YULANMINI_START_DOCSTRING, |
|
) |
|
class YuLanMiniModel(YuLanMiniPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YuLanMiniDecoderLayer`] |
|
|
|
Args: |
|
config: YuLanMiniConfig |
|
""" |
|
|
|
def __init__(self, config: YuLanMiniConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, |
|
self.padding_idx) |
|
|
|
|
|
|
|
|
|
self.embed_tokens_alpha = 1 |
|
if not self.config.tie_word_embeddings: |
|
self.embed_tokens.__std__ = 1.0 |
|
|
|
rms_class = LigerRMSNorm if config.use_liger else YuLanMiniRMSNorm |
|
if config.rms_type == "llama": |
|
rms_kwargs = {"offset": 0, "init_fn": "ones", "casting_mode": "llama"} |
|
elif config.rms_type == "gemma": |
|
rms_kwargs = {"offset": 1, "init_fn": "zeros", "casting_mode": "gemma"} |
|
if self.config.embedding_ln: |
|
ln_class = LigerLayerNorm if config.use_liger else nn.LayerNorm |
|
self.embedding_layernorm = ln_class(config.hidden_size, eps=config.layer_norm_eps, bias=False) |
|
elif self.config.embedding_rmsln: |
|
self.embedding_layernorm = rms_class(config.hidden_size, eps=config.rms_norm_eps, **rms_kwargs) |
|
|
|
self.layers = nn.ModuleList([ |
|
YuLanMiniDecoderLayer(config, layer_idx) |
|
for layer_idx in range(config.num_hidden_layers) |
|
]) |
|
self._attn_implementation = config._attn_implementation |
|
|
|
self.norm = rms_class(config.hidden_size, |
|
eps=config.rms_norm_eps, **rms_kwargs) |
|
if self.config.wesar_weights and self.config.use_norm_alpha : |
|
self.norm_alpha = nn.Parameter(torch.tensor(1) * self.config.norm_alpha) |
|
else: |
|
|
|
self.norm_alpha = 1 |
|
self._init_rope() |
|
|
|
self.gradient_checkpointing = True |
|
if self.config.wesar_weights: |
|
self.shrink_alpha = config.shrink_alpha |
|
else: |
|
self.shrink_alpha = 1 |
|
self.scale_emb = config.scale_emb |
|
self.log_hidden_states = get_hidden_states_logger(0, None) |
|
|
|
self.post_init() |
|
|
|
def _init_rope(self): |
|
self.rope_theta = self.config.rope_theta |
|
self.max_position_embeddings = self.config.max_position_embeddings |
|
self.hidden_size = self.config.hidden_size |
|
self.num_heads = self.config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = YuLanMiniRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
|
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "linear": |
|
self.rotary_emb = YuLanMiniLinearScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "dynamic": |
|
self.rotary_emb = YuLanMiniDynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(YULANMINI_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = (output_hidden_states |
|
if output_hidden_states is not None else |
|
self.config.output_hidden_states) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = True |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
use_legacy_cache = False |
|
if use_cache and not isinstance(past_key_values, |
|
Cache) and not self.training: |
|
use_legacy_cache = True |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
logger.warning_once( |
|
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " |
|
"Please use an appropriate `Cache` class (https://huggingface.co./docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) * self.scale_emb |
|
inputs_embeds = inputs_embeds * self.embed_tokens_alpha |
|
self.log_hidden_states(0, "0_embed", inputs_embeds) |
|
|
|
if 0 <= self.shrink_alpha < 1: |
|
shrink_alpha = self.shrink_alpha |
|
inputs_embeds = inputs_embeds * shrink_alpha + inputs_embeds.detach() * (1 - shrink_alpha) |
|
self.log_hidden_states(0, "1_shrink", inputs_embeds) |
|
|
|
if self.config.embedding_ln: |
|
inputs_embeds = self.embedding_layernorm(inputs_embeds) |
|
self.log_hidden_states(0, "2_embln", inputs_embeds) |
|
elif self.config.embedding_rmsln: |
|
inputs_embeds = self.embedding_layernorm(inputs_embeds) * self.config.ln_scale |
|
self.log_hidden_states(0, "2_embln", inputs_embeds) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length( |
|
) if past_key_values is not None else 0 |
|
cache_position = torch.arange(past_seen_tokens, |
|
past_seen_tokens + |
|
inputs_embeds.shape[1], |
|
device=inputs_embeds.device) |
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, |
|
cache_position, past_key_values, |
|
output_attentions) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
position_embeddings = self.rotary_emb(hidden_states, hidden_states.shape[1]) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states, ) |
|
|
|
if self.gradient_checkpointing and self.training and idx % self.config.gradient_checkpointing_step != 0: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
position_embeddings, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[ |
|
2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1], ) |
|
|
|
old_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
hidden_states = self.norm(hidden_states) * self.config.ln_scale * self.norm_alpha |
|
hidden_states = hidden_states.to(old_dtype) |
|
self.log_hidden_states(7, "0_norm", hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states, ) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache( |
|
) if use_legacy_cache else next_decoder_cache |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length( |
|
) if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
|
|
|
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
if using_static_cache: |
|
target_length = past_key_values.get_max_length() |
|
else: |
|
target_length = (attention_mask.shape[-1] if isinstance( |
|
attention_mask, torch.Tensor) else past_seen_tokens + |
|
sequence_length + 1) |
|
|
|
|
|
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
device=device, |
|
min_dtype=min_dtype, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
) |
|
|
|
if (self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type == "cuda" |
|
and not output_attentions): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended( |
|
causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
|
|
class YuLanMiniModelForCausalLM(YuLanMiniPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = YuLanMiniModel(config) |
|
self.config = config |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, |
|
config.vocab_size, |
|
bias=False) |
|
if self.config.wesar_weights: |
|
self.lm_head_alpha = nn.Parameter(torch.tensor(1) * self.config.lm_head_alpha) |
|
else: |
|
self.lm_head_alpha = 1 |
|
|
|
self.lm_head.__do_scale_tager_mu_dim_base_model__ = not self.config.tie_word_embeddings |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(YULANMINI_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
teacher_logits: list = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
subset: Optional[List[str]] = None, |
|
idx: Optional[List[int]] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, YuLanMiniForCausalLM |
|
|
|
>>> model = YuLanMiniForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = self.config.output_attentions |
|
output_hidden_states = self.config.output_hidden_states |
|
return_dict = True |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
logits = None |
|
loss = None |
|
|
|
if labels is not None: |
|
|
|
if self.config.dim_model_base_logits is not None and self.config.hidden_size != self.config.dim_model_base_logits: |
|
hidden_states = hidden_states / (self.config.hidden_size / self.config.dim_model_base_logits) |
|
|
|
hidden_states = hidden_states * self.lm_head_alpha |
|
shift_hidden_states = hidden_states[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
lce = LigerFusedLinearCrossEntropyLoss(lse_square_scale=self.config.z_loss) |
|
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|