Update README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,10 @@
|
|
2 |
library_name: transformers
|
3 |
datasets:
|
4 |
- weblab-GENIAC/aya-ja-evol-instruct-calm3-dpo-masked
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
# Model Card for Model ID
|
@@ -35,166 +39,122 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
35 |
- **Demo [optional]:** [More Information Needed]
|
36 |
|
37 |
## Uses
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
### Direct Use
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
[More Information Needed]
|
46 |
|
47 |
-
### Downstream Use [optional]
|
48 |
|
49 |
-
|
|
|
50 |
|
51 |
-
[More Information Needed]
|
52 |
|
53 |
-
### Out-of-Scope Use
|
54 |
|
55 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
## Bias, Risks, and Limitations
|
60 |
|
61 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
62 |
|
63 |
-
[More Information Needed]
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
68 |
|
69 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
70 |
|
71 |
-
## How to Get Started with the Model
|
72 |
|
73 |
-
Use the code below to get started with the model.
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
|
|
78 |
|
79 |
-
### Training Data
|
80 |
|
81 |
-
|
|
|
82 |
|
83 |
-
|
|
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
|
|
|
|
88 |
|
89 |
-
|
90 |
|
91 |
-
|
|
|
|
|
|
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
107 |
-
|
108 |
-
### Testing Data, Factors & Metrics
|
109 |
-
|
110 |
-
#### Testing Data
|
111 |
-
|
112 |
-
<!-- This should link to a Dataset Card if possible. -->
|
113 |
-
|
114 |
-
[More Information Needed]
|
115 |
-
|
116 |
-
#### Factors
|
117 |
-
|
118 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
119 |
-
|
120 |
-
[More Information Needed]
|
121 |
-
|
122 |
-
#### Metrics
|
123 |
-
|
124 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
125 |
-
|
126 |
-
[More Information Needed]
|
127 |
-
|
128 |
-
### Results
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
#### Summary
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
## Model Examination [optional]
|
137 |
-
|
138 |
-
<!-- Relevant interpretability work for the model goes here -->
|
139 |
-
|
140 |
-
[More Information Needed]
|
141 |
-
|
142 |
-
## Environmental Impact
|
143 |
-
|
144 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
145 |
-
|
146 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
147 |
-
|
148 |
-
- **Hardware Type:** [More Information Needed]
|
149 |
-
- **Hours used:** [More Information Needed]
|
150 |
-
- **Cloud Provider:** [More Information Needed]
|
151 |
-
- **Compute Region:** [More Information Needed]
|
152 |
-
- **Carbon Emitted:** [More Information Needed]
|
153 |
-
|
154 |
-
## Technical Specifications [optional]
|
155 |
-
|
156 |
-
### Model Architecture and Objective
|
157 |
-
|
158 |
-
[More Information Needed]
|
159 |
-
|
160 |
-
### Compute Infrastructure
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
#### Hardware
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
#### Software
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
## Citation [optional]
|
173 |
-
|
174 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
175 |
-
|
176 |
-
**BibTeX:**
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
**APA:**
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
## Glossary [optional]
|
185 |
-
|
186 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
187 |
-
|
188 |
-
[More Information Needed]
|
189 |
-
|
190 |
-
## More Information [optional]
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## Model Card Authors [optional]
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## Model Card Contact
|
199 |
-
|
200 |
-
[More Information Needed]
|
|
|
2 |
library_name: transformers
|
3 |
datasets:
|
4 |
- weblab-GENIAC/aya-ja-evol-instruct-calm3-dpo-masked
|
5 |
+
language:
|
6 |
+
- ja
|
7 |
+
base_model:
|
8 |
+
- llm-jp/llm-jp-3-13b
|
9 |
---
|
10 |
|
11 |
# Model Card for Model ID
|
|
|
39 |
- **Demo [optional]:** [More Information Needed]
|
40 |
|
41 |
## Uses
|
42 |
+
実行の仕方は以下の通りです。 以下は、Model_Inference_Template_DPO_20241207.ipynbについて、モデルidのみを変えたものになっています。 omnicampus上での演習環境での使用を想定しています。
|
43 |
|
44 |
+
```
|
45 |
+
!pip install -U ipywidgets
|
46 |
+
!pip install transformers
|
47 |
+
!pip install -U bitsandbytes
|
48 |
+
!pip install -U accelerate
|
49 |
+
!pip install -U datasets
|
50 |
+
!pip install -U peft
|
51 |
+
```
|
52 |
|
|
|
53 |
|
54 |
+
```python
|
55 |
+
from transformers import (
|
56 |
+
AutoModelForCausalLM,
|
57 |
+
AutoTokenizer,
|
58 |
+
BitsAndBytesConfig,
|
59 |
+
)
|
60 |
+
from peft import PeftModel
|
61 |
+
import torch
|
62 |
+
from tqdm import tqdm
|
63 |
+
import json
|
64 |
|
|
|
65 |
|
|
|
66 |
|
67 |
+
# Hugging Faceで取得したTokenをこちらに貼る。
|
68 |
+
HF_TOKEN = "your_token"
|
69 |
|
|
|
70 |
|
|
|
71 |
|
|
|
72 |
|
73 |
+
# ベースとなるモデルと学習したLoRAのアダプタ。
|
74 |
+
# model_idの値はomnicampusの環境におけるモデルのパスを表しており、それ以外の環境で実行する場合は変更の必要があります。
|
75 |
+
model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a"
|
76 |
+
# omnicampus以外の環境をご利用の方は以下をご利用ください。
|
77 |
+
# base_model_id = "llm-jp/llm-jp-3-13b"
|
78 |
+
adapter_id = "yuki-2000/llm-jp-3-13b-finetune1" # こちらにアップロードしたLoRAアダプタのHugging FaceのIDを指定してください。
|
79 |
+
adapter_dpo_id = "yuki-2000/llm-jp-3-13b-finetune1-dpo1" # こちらにアップロードしたDPOアダプタのHugging FaceのIDを指定してください。
|
80 |
|
|
|
81 |
|
|
|
82 |
|
|
|
83 |
|
84 |
+
# QLoRA config
|
85 |
+
bnb_config = BitsAndBytesConfig(
|
86 |
+
load_in_4bit=True,
|
87 |
+
bnb_4bit_quant_type="nf4",
|
88 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
89 |
+
)
|
90 |
|
|
|
91 |
|
|
|
92 |
|
|
|
93 |
|
|
|
94 |
|
95 |
+
# Load model
|
96 |
+
model = AutoModelForCausalLM.from_pretrained(
|
97 |
+
model_id,
|
98 |
+
quantization_config=bnb_config,
|
99 |
+
device_map="auto",
|
100 |
+
token = HF_TOKEN
|
101 |
+
)
|
102 |
|
103 |
+
# Load tokenizer
|
104 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
|
105 |
|
|
|
106 |
|
107 |
+
# 元のモデルにLoRAのアダプタを統合。
|
108 |
+
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
|
109 |
|
110 |
+
# LoRAのモデルにDPOのアダプタを統合。
|
111 |
+
model = PeftModel.from_pretrained(model, adapter_dpo_id, token = HF_TOKEN)
|
112 |
|
113 |
+
# データセットの読み込み。
|
114 |
+
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
|
115 |
+
datasets = []
|
116 |
+
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
|
117 |
+
item = ""
|
118 |
+
for line in f:
|
119 |
+
line = line.strip()
|
120 |
+
item += line
|
121 |
+
if item.endswith("}"):
|
122 |
+
datasets.append(json.loads(item))
|
123 |
+
item = ""
|
124 |
|
125 |
+
# llmjp
|
126 |
+
results = []
|
127 |
+
for data in tqdm(datasets):
|
128 |
|
129 |
+
input = data["input"]
|
130 |
|
131 |
+
prompt = f"""### 指示
|
132 |
+
{input}
|
133 |
+
### 回答
|
134 |
+
"""
|
135 |
|
136 |
+
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
|
137 |
+
attention_mask = torch.ones_like(tokenized_input)
|
138 |
+
with torch.no_grad():
|
139 |
+
outputs = model.generate(
|
140 |
+
tokenized_input,
|
141 |
+
attention_mask=attention_mask,
|
142 |
+
max_new_tokens=100,
|
143 |
+
do_sample=False,
|
144 |
+
repetition_penalty=1.2,
|
145 |
+
pad_token_id=tokenizer.eos_token_id
|
146 |
+
)[0]
|
147 |
+
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
|
148 |
|
149 |
+
results.append({"task_id": data["task_id"], "input": input, "output": output})
|
150 |
|
151 |
+
# こちらで生成されたjsolを提出してください。
|
152 |
+
# 本コードではinputも含んでいますが、なくても問題ありません。
|
153 |
+
# 必須なのはtask_idとoutputとなります。
|
154 |
+
import re
|
155 |
+
jsonl_id = re.sub(".*/", "", adapter_dpo_id)
|
156 |
+
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
|
157 |
+
for result in results:
|
158 |
+
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
|
159 |
+
f.write('\n')
|
160 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|