--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is randomly initialized, using the config from [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct) but with smaller size. **Note the model is in bfloat16**. "yujiepan/llama-3-tiny-random" and "yujiepan/meta-llama-3-tiny-random" shares exactly the same files except the repo name. Codes: ```python import transformers import torch import os from huggingface_hub import create_repo, upload_folder import accelerate source_model_id = 'meta-llama/Meta-Llama-3-8B-Instruct' save_path = '/tmp/yujiepan/meta-llama-3-tiny-random' repo_id = 'yujiepan/meta-llama-3-tiny-random' os.system(f'rm -rf {save_path}') config = transformers.AutoConfig.from_pretrained( source_model_id, trust_remote_code=True, ) config._name_or_path = source_model_id config.hidden_size = 4 config.intermediate_size = 14 config.num_attention_heads = 2 config.num_key_value_heads = 1 config.num_hidden_layers = 2 config.torch_dtype = "bfloat16" model = transformers.AutoModelForCausalLM.from_config( config, trust_remote_code=True, ) with accelerate.init_empty_weights(): model.generation_config = transformers.AutoModelForCausalLM.from_pretrained(source_model_id).generation_config model = model.to(torch.bfloat16) model.save_pretrained(save_path) tokenizer = transformers.AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True, ) tokenizer.save_pretrained(save_path) model.float().generate(torch.tensor([[1, 2, 3]]).long(), max_length=16) os.system(f'ls -alh {save_path}') # os.system(f'rm -rf {save_path}/model.safetensors') create_repo(repo_id, exist_ok=True) upload_folder(repo_id='yujiepan/meta-llama-3-tiny-random', folder_path=save_path) upload_folder(repo_id='yujiepan/llama-3-tiny-random', folder_path=save_path) ```