--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-food101-jpqd-1to2r1.5-epo7-finetuned-student results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9123960396039604 --- # swin-food101-jpqd-1to2r1.5-epo7-finetuned-student This model is a fine-tuned version of [skylord/swin-finetuned-food101](https://huggingface.co./skylord/swin-finetuned-food101) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2658 - Accuracy: 0.9124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2977 | 0.42 | 500 | 0.1949 | 0.9112 | | 0.3183 | 0.84 | 1000 | 0.1867 | 0.9144 | | 99.9552 | 1.27 | 1500 | 99.4882 | 0.7577 | | 162.4195 | 1.69 | 2000 | 162.7763 | 0.3373 | | 1.2272 | 2.11 | 2500 | 0.7333 | 0.8564 | | 1.0236 | 2.54 | 3000 | 0.5016 | 0.8823 | | 0.6472 | 2.96 | 3500 | 0.4337 | 0.8908 | | 0.52 | 3.38 | 4000 | 0.3927 | 0.8974 | | 0.6075 | 3.8 | 4500 | 0.3506 | 0.9011 | | 0.5348 | 4.23 | 5000 | 0.3425 | 0.9006 | | 0.444 | 4.65 | 5500 | 0.3268 | 0.9044 | | 0.5787 | 5.07 | 6000 | 0.3020 | 0.9078 | | 0.3995 | 5.49 | 6500 | 0.2932 | 0.9095 | | 0.414 | 5.92 | 7000 | 0.2806 | 0.9104 | | 0.4386 | 6.34 | 7500 | 0.2738 | 0.9112 | | 0.452 | 6.76 | 8000 | 0.2673 | 0.9127 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2