--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-food101-jpqd-1to2r1-epo7-finetuned-student results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9213069306930693 --- # swin-food101-jpqd-1to2r1-epo7-finetuned-student This model is a fine-tuned version of [skylord/swin-finetuned-food101](https://huggingface.co./skylord/swin-finetuned-food101) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.1947 - Accuracy: 0.9213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2342 | 0.42 | 500 | 0.1993 | 0.9099 | | 0.2891 | 0.84 | 1000 | 0.1912 | 0.9137 | | 67.4995 | 1.27 | 1500 | 66.4760 | 0.8035 | | 109.8398 | 1.69 | 2000 | 109.5154 | 0.4499 | | 0.6337 | 2.11 | 2500 | 0.4865 | 0.8826 | | 0.6605 | 2.54 | 3000 | 0.3551 | 0.9013 | | 0.4013 | 2.96 | 3500 | 0.3176 | 0.9044 | | 0.3949 | 3.38 | 4000 | 0.2839 | 0.9079 | | 0.4632 | 3.8 | 4500 | 0.2652 | 0.9118 | | 0.3717 | 4.23 | 5000 | 0.2459 | 0.9147 | | 0.3308 | 4.65 | 5500 | 0.2439 | 0.9159 | | 0.4232 | 5.07 | 6000 | 0.2259 | 0.9169 | | 0.3426 | 5.49 | 6500 | 0.2147 | 0.9199 | | 0.331 | 5.92 | 7000 | 0.2086 | 0.9189 | | 0.3032 | 6.34 | 7500 | 0.2036 | 0.9201 | | 0.3393 | 6.76 | 8000 | 0.1978 | 0.9204 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2