--- library_name: diffusers base_model: runwayml/stable-diffusion-v1-5 tags: - text-to-image license: creativeml-openrail-m inference: true --- ## yujiepan/dreamshaper-8-lcm-openvino This model applies [latent-consistency/lcm-lora-sdv1-5](https://huggingface.co./latent-consistency/lcm-lora-sdv1-5) on base model [Lykon/dreamshaper-8](https://huggingface.co./Lykon/dreamshaper-8), and is converted as OpenVINO format. #### Usage ```python from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline pipeline = OVStableDiffusionPipeline.from_pretrained( 'yujiepan/dreamshaper-8-lcm-openvino', device='CPU', ) prompt = 'cute dog typing at a laptop, 4k, details' images = pipeline(prompt=prompt, num_inference_steps=8, guidance_scale=1.0).images ``` ![output image](./assets/cute-dog-typing-at-a-laptop-4k-details.png) #### TODO - The fp16 base model is converted to openvino in fp32, which is unnecessary. #### Scripts The model is generated by the following codes: ```python import torch from diffusers import AutoPipelineForText2Image, LCMScheduler from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline base_model_id = "Lykon/dreamshaper-8" adapter_id = "latent-consistency/lcm-lora-sdv1-5" save_torch_folder = './dreamshaper-8-lcm' save_ov_folder = './dreamshaper-8-lcm-openvino' torch_pipeline = AutoPipelineForText2Image.from_pretrained( base_model_id, torch_dtype=torch.float16, variant="fp16") torch_pipeline.scheduler = LCMScheduler.from_config( torch_pipeline.scheduler.config) # load and fuse lcm lora torch_pipeline.load_lora_weights(adapter_id) torch_pipeline.fuse_lora() torch_pipeline.save_pretrained(save_torch_folder) ov_pipeline = OVStableDiffusionPipeline.from_pretrained( save_torch_folder, device='CPU', export=True, ) ov_pipeline.save_pretrained(save_ov_folder) ```