Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: diffusers
|
3 |
+
base_model: runwayml/stable-diffusion-v1-5
|
4 |
+
tags:
|
5 |
+
- text-to-image
|
6 |
+
license: creativeml-openrail-m
|
7 |
+
inference: true
|
8 |
+
---
|
9 |
+
|
10 |
+
## yujiepan/dreamshaper-8-lcm-openvino
|
11 |
+
|
12 |
+
This model applies [latent-consistency/lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5)
|
13 |
+
on base model [Lykon/dreamshaper-8](https://huggingface.co/Lykon/dreamshaper-8), and is converted as OpenVINO **FP16** format.
|
14 |
+
|
15 |
+
#### Usage
|
16 |
+
|
17 |
+
```python
|
18 |
+
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
|
19 |
+
pipeline = OVStableDiffusionPipeline.from_pretrained(
|
20 |
+
'yujiepan/dreamshaper-8-lcm-openvino',
|
21 |
+
device='CPU',
|
22 |
+
)
|
23 |
+
prompt = 'cute dog typing at a laptop, 4k, details'
|
24 |
+
images = pipeline(prompt=prompt, num_inference_steps=8, guidance_scale=1.0).images
|
25 |
+
```
|
26 |
+
|
27 |
+
![output image](./assets/cute-dog-typing-at-a-laptop-4k-details.png)
|
28 |
+
|
29 |
+
|
30 |
+
#### Scripts
|
31 |
+
|
32 |
+
The model is generated by the following codes:
|
33 |
+
|
34 |
+
```python
|
35 |
+
import torch
|
36 |
+
from diffusers import AutoPipelineForText2Image, LCMScheduler
|
37 |
+
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
|
38 |
+
|
39 |
+
base_model_id = "Lykon/dreamshaper-8"
|
40 |
+
adapter_id = "latent-consistency/lcm-lora-sdv1-5"
|
41 |
+
save_torch_folder = './dreamshaper-8-lcm'
|
42 |
+
save_ov_folder = './dreamshaper-8-lcm-openvino'
|
43 |
+
|
44 |
+
torch_pipeline = AutoPipelineForText2Image.from_pretrained(
|
45 |
+
base_model_id, torch_dtype=torch.float16, variant="fp16")
|
46 |
+
torch_pipeline.scheduler = LCMScheduler.from_config(
|
47 |
+
torch_pipeline.scheduler.config)
|
48 |
+
# load and fuse lcm lora
|
49 |
+
torch_pipeline.load_lora_weights(adapter_id)
|
50 |
+
torch_pipeline.fuse_lora()
|
51 |
+
torch_pipeline.save_pretrained(save_torch_folder)
|
52 |
+
|
53 |
+
ov_pipeline = OVStableDiffusionPipeline.from_pretrained(
|
54 |
+
save_torch_folder,
|
55 |
+
device='CPU',
|
56 |
+
export=True,
|
57 |
+
)
|
58 |
+
ov_pipeline.half()
|
59 |
+
ov_pipeline.save_pretrained(save_ov_folder)
|
60 |
+
```
|