--- tags: - generated_from_trainer datasets: - imdb metrics: - accuracy base_model: textattack/bert-base-uncased-imdb model-index: - name: baseline results: - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - type: accuracy value: 0.92088 name: Accuracy --- # baseline This model is a fine-tuned version of [textattack/bert-base-uncased-imdb](https://huggingface.co./textattack/bert-base-uncased-imdb) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.5238 - Accuracy: 0.9209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training script ```bash python run_glue.py \ --model_name_or_path textattack/bert-base-uncased-imdb \ --dataset_name imdb \ --do_train \ --do_eval \ --max_seq_length 384 \ --pad_to_max_length False \ --per_device_train_batch_size 32 \ --per_device_eval_batch_size 32 \ --fp16 \ --learning_rate 5e-5 \ --optim adamw_torch \ --num_train_epochs 3 \ --overwrite_output_dir \ --output_dir /tmp/bert-base-uncased-imdb ``` Note: `run_glue.py` is modified to set the "test" split as evaluation dataset. ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1 - Datasets 2.11.0 - Tokenizers 0.13.3