File size: 1,701 Bytes
b3896fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
language:
- ko
license: apache-2.0
base_model: openai/whisper-large
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- younghoonKIM/MAICON2023_denoise_preprocessd
model-index:
- name: whisper_large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper_large
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the MAICON2023_denoise dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2852
- Cer: 22.8829
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.5697 | 0.36 | 1000 | 0.5593 | 37.0887 |
| 0.3805 | 0.71 | 2000 | 0.4014 | 30.2776 |
| 0.1647 | 1.07 | 3000 | 0.3255 | 26.6392 |
| 0.1244 | 1.43 | 4000 | 0.2852 | 22.8829 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|