File size: 1,596 Bytes
0a46a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: mit
base_model: gogamza/kobart-base-v2
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: Gyeongsang_encoder
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Gyeongsang_encoder
This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co./gogamza/kobart-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0062
- Bleu: 91.4436
- Gen Len: 13.3478
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.0054 | 1.0 | 12910 | 0.0072 | 91.1948 | 13.3484 |
| 0.0052 | 2.0 | 25820 | 0.0063 | 91.3684 | 13.3464 |
| 0.0043 | 3.0 | 38730 | 0.0062 | 91.4436 | 13.3478 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|