--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: Whisper Tiny GA-EN Speech Translation v.1.4 results: [] datasets: - ymoslem/IWSLT2023-GA-EN language: - ga - en --- # Whisper Tiny GA-EN Speech Translation v.1.4 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7420 - Bleu: 14.71 - Chrf: 30.02 - Wer: 95.7226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Experiment As this is a translation task into English, use `language="English"` ``` tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", cache_dir=cache_dir, language="english", task="translate") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer | |:-------------:|:-----:|:----:|:---------------:|:-----:|:-----:|:--------:| | 0.8117 | 1.47 | 100 | 2.1773 | 8.81 | 24.15 | 119.9910 | | 0.3555 | 2.94 | 200 | 2.2596 | 11.81 | 27.7 | 110.8510 | | 0.0872 | 4.41 | 300 | 2.4108 | 12.89 | 28.57 | 110.5808 | | 0.063 | 5.88 | 400 | 2.5306 | 12.67 | 27.78 | 107.1139 | | 0.034 | 7.35 | 500 | 2.5784 | 17.0 | 30.42 | 85.8622 | | 0.0349 | 8.82 | 600 | 2.6201 | 16.64 | 29.98 | 86.8978 | | 0.0198 | 10.29 | 700 | 2.7151 | 16.0 | 30.04 | 88.2936 | | 0.0134 | 11.76 | 800 | 2.7159 | 14.16 | 30.03 | 105.0878 | | 0.0088 | 13.24 | 900 | 2.7369 | 14.61 | 29.32 | 94.3269 | | 0.0056 | 14.71 | 1000 | 2.7420 | 14.71 | 30.02 | 95.7226 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2