--- language: - ga - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - ymoslem/IWSLT2023-GA-EN - ymoslem/FLEURS-GA-EN - ymoslem/BitesizeIrish-GA-EN - ymoslem/SpokenWords-GA-EN-MTed - ymoslem/Tatoeba-Speech-Irish - ymoslem/Wikimedia-Speech-Irish metrics: - bleu - wer - chrf model-index: - name: Whisper Small GA-EN Speech Translation results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: >- IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia + augmented type: ymoslem/IWSLT2023-GA-EN metrics: - name: Bleu type: bleu value: 28.44 - name: Wer type: wer value: 72.62494371904548 --- # Whisper Small GA-EN Speech Translation This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia + augmented dataset. It achieves the following results on the evaluation set: - Loss: 1.3641 - Bleu: 28.44 - Chrf: 43.55 - Wer: 72.6249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - warmup_steps: 0 - training_steps: 3000 - mixed_precision_training: Native AMP - generation_max_length: 128 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer | |:-------------:|:------:|:----:|:---------------:|:-----:|:-----:|:--------:| | 2.3595 | 0.0438 | 100 | 1.7944 | 9.69 | 26.37 | 114.4529 | | 1.9008 | 0.0876 | 200 | 1.5391 | 14.89 | 32.44 | 93.6065 | | 1.535 | 0.1313 | 300 | 1.3972 | 18.24 | 33.57 | 81.9901 | | 1.3307 | 0.1751 | 400 | 1.3684 | 21.34 | 37.37 | 72.8050 | | 1.1263 | 0.2189 | 500 | 1.3284 | 19.33 | 39.83 | 91.8955 | | 0.9805 | 0.2627 | 600 | 1.3301 | 23.67 | 38.68 | 78.3881 | | 0.8989 | 0.3065 | 700 | 1.3123 | 20.32 | 36.94 | 76.3170 | | 0.7557 | 0.3503 | 800 | 1.2717 | 25.74 | 40.16 | 72.4448 | | 0.7216 | 0.3940 | 900 | 1.3090 | 22.34 | 37.79 | 78.9284 | | 0.6131 | 0.4378 | 1000 | 1.2566 | 24.36 | 41.49 | 74.5160 | | 0.5032 | 0.4816 | 1100 | 1.2742 | 21.69 | 41.12 | 83.3859 | | 0.4567 | 0.5254 | 1200 | 1.2893 | 24.33 | 40.05 | 70.8690 | | 0.3968 | 0.5692 | 1300 | 1.3000 | 26.97 | 41.45 | 69.6083 | | 0.3353 | 0.6130 | 1400 | 1.2784 | 27.51 | 43.97 | 63.9352 | | 0.2826 | 0.6567 | 1500 | 1.3165 | 24.36 | 39.83 | 70.6439 | | 0.2643 | 0.7005 | 1600 | 1.3317 | 24.98 | 40.01 | 68.6628 | | 0.2047 | 0.7443 | 1700 | 1.2905 | 28.01 | 42.72 | 65.8262 | | 0.1946 | 0.7881 | 1800 | 1.2820 | 26.17 | 42.46 | 64.9257 | | 0.1588 | 0.8319 | 1900 | 1.3172 | 26.9 | 43.02 | 63.5299 | | 0.1322 | 0.8757 | 2000 | 1.3248 | 27.78 | 43.53 | 63.8001 | | 0.1134 | 0.9194 | **2100** | 1.3198 | 28.98 | 45.27 | 72.7600 | | 0.1031 | 0.9632 | 2200 | 1.3502 | 29.18 | 44.77 | 68.3476 | | 0.0518 | 1.0070 | 2300 | 1.3433 | 28.6 | 42.96 | 69.0230 | | 0.0481 | 1.0508 | 2400 | 1.3715 | 29.01 | 44.46 | 69.6983 | | 0.0367 | 1.0946 | 2500 | 1.3696 | 26.94 | 42.39 | 73.6605 | | 0.0309 | 1.1384 | 2600 | 1.3665 | 28.12 | 43.32 | 70.3737 | | 0.0302 | 1.1821 | 2700 | 1.3836 | 29.6 | 44.56 | 67.2220 | | 0.0302 | 1.2259 | 2800 | 1.3667 | 29.0 | 44.33 | 67.2220 | | 0.0252 | 1.2697 | 2900 | 1.3633 | 29.07 | 44.09 | 70.6889 | | 0.0257 | 1.3135 | 3000 | 1.3641 | 28.44 | 43.55 | 72.6249 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1