File size: 4,458 Bytes
8da2621 7c287e2 8da2621 7c287e2 8da2621 7c287e2 8da2621 7c287e2 8da2621 7c287e2 8da2621 7c287e2 8da2621 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
metrics:
- bleu
- wer
model-index:
- name: Whisper Small GA-EN Speech Translation
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia + augmented
type: ymoslem/IWSLT2023-GA-EN
metrics:
- name: Bleu
type: bleu
value: 28.44
- name: Wer
type: wer
value: 72.62494371904548
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small GA-EN Speech Translation
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia + augmented dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3641
- Bleu: 28.44
- Chrf: 43.55
- Wer: 72.6249
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer |
|:-------------:|:------:|:----:|:---------------:|:-----:|:-----:|:--------:|
| 2.3595 | 0.0438 | 100 | 1.7944 | 9.69 | 26.37 | 114.4529 |
| 1.9008 | 0.0876 | 200 | 1.5391 | 14.89 | 32.44 | 93.6065 |
| 1.535 | 0.1313 | 300 | 1.3972 | 18.24 | 33.57 | 81.9901 |
| 1.3307 | 0.1751 | 400 | 1.3684 | 21.34 | 37.37 | 72.8050 |
| 1.1263 | 0.2189 | 500 | 1.3284 | 19.33 | 39.83 | 91.8955 |
| 0.9805 | 0.2627 | 600 | 1.3301 | 23.67 | 38.68 | 78.3881 |
| 0.8989 | 0.3065 | 700 | 1.3123 | 20.32 | 36.94 | 76.3170 |
| 0.7557 | 0.3503 | 800 | 1.2717 | 25.74 | 40.16 | 72.4448 |
| 0.7216 | 0.3940 | 900 | 1.3090 | 22.34 | 37.79 | 78.9284 |
| 0.6131 | 0.4378 | 1000 | 1.2566 | 24.36 | 41.49 | 74.5160 |
| 0.5032 | 0.4816 | 1100 | 1.2742 | 21.69 | 41.12 | 83.3859 |
| 0.4567 | 0.5254 | 1200 | 1.2893 | 24.33 | 40.05 | 70.8690 |
| 0.3968 | 0.5692 | 1300 | 1.3000 | 26.97 | 41.45 | 69.6083 |
| 0.3353 | 0.6130 | 1400 | 1.2784 | 27.51 | 43.97 | 63.9352 |
| 0.2826 | 0.6567 | 1500 | 1.3165 | 24.36 | 39.83 | 70.6439 |
| 0.2643 | 0.7005 | 1600 | 1.3317 | 24.98 | 40.01 | 68.6628 |
| 0.2047 | 0.7443 | 1700 | 1.2905 | 28.01 | 42.72 | 65.8262 |
| 0.1946 | 0.7881 | 1800 | 1.2820 | 26.17 | 42.46 | 64.9257 |
| 0.1588 | 0.8319 | 1900 | 1.3172 | 26.9 | 43.02 | 63.5299 |
| 0.1322 | 0.8757 | 2000 | 1.3248 | 27.78 | 43.53 | 63.8001 |
| 0.1134 | 0.9194 | 2100 | 1.3198 | 28.98 | 45.27 | 72.7600 |
| 0.1031 | 0.9632 | 2200 | 1.3502 | 29.18 | 44.77 | 68.3476 |
| 0.0518 | 1.0070 | 2300 | 1.3433 | 28.6 | 42.96 | 69.0230 |
| 0.0481 | 1.0508 | 2400 | 1.3715 | 29.01 | 44.46 | 69.6983 |
| 0.0367 | 1.0946 | 2500 | 1.3696 | 26.94 | 42.39 | 73.6605 |
| 0.0309 | 1.1384 | 2600 | 1.3665 | 28.12 | 43.32 | 70.3737 |
| 0.0302 | 1.1821 | 2700 | 1.3836 | 29.6 | 44.56 | 67.2220 |
| 0.0302 | 1.2259 | 2800 | 1.3667 | 29.0 | 44.33 | 67.2220 |
| 0.0252 | 1.2697 | 2900 | 1.3633 | 29.07 | 44.09 | 70.6889 |
| 0.0257 | 1.3135 | 3000 | 1.3641 | 28.44 | 43.55 | 72.6249 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|