--- language: - ga - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - ymoslem/IWSLT2023-GA-EN - ymoslem/FLEURS-GA-EN - ymoslem/BitesizeIrish-GA-EN - ymoslem/SpokenWords-GA-EN-MTed - ymoslem/Tatoeba-Speech-Irish - ymoslem/Wikimedia-Speech-Irish metrics: - bleu - wer model-index: - name: Whisper Small GA-EN Speech Translation results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia + augmented type: ymoslem/IWSLT2023-GA-EN metrics: - name: Bleu type: bleu value: 30.9 - name: Wer type: wer value: 62.26924808644755 --- # Whisper Small GA-EN Speech Translation This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia + augmented dataset. It achieves the following results on the evaluation set: - Loss: 1.3822 - Bleu: 30.9 - Chrf: 46.57 - Wer: 62.2692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer | |:-------------:|:------:|:----:|:-----:|:-----:|:---------------:|:--------:| | 2.3533 | 0.0438 | 100 | 6.29 | 25.08 | 1.7789 | 148.7618 | | 1.9035 | 0.0876 | 200 | 18.21 | 34.02 | 1.5122 | 85.6821 | | 1.5357 | 0.1313 | 300 | 14.01 | 33.7 | 1.3983 | 93.3363 | | 1.3056 | 0.1751 | 400 | 18.12 | 37.35 | 1.3447 | 95.0023 | | 1.1177 | 0.2189 | 500 | 18.47 | 38.44 | 1.3168 | 95.3624 | | 0.984 | 0.2627 | 600 | 26.82 | 41.23 | 1.3202 | 67.3120 | | 0.8945 | 0.3065 | 700 | 26.73 | 42.53 | 1.2947 | 67.1319 | | 0.7508 | 0.3503 | 800 | 25.67 | 42.06 | 1.2476 | 74.2008 | | 0.7127 | 0.3940 | 900 | 22.59 | 41.05 | 1.2630 | 75.7767 | | 0.5944 | 0.4378 | 1000 | 22.37 | 40.31 | 1.2726 | 82.4854 | | 0.4972 | 0.4816 | 1100 | 22.88 | 42.52 | 1.2898 | 82.5304 | | 0.4517 | 0.5254 | 1200 | 27.99 | 44.42 | 1.2509 | 64.1603 | | 0.3885 | 0.5692 | 1300 | 29.58 | 44.8 | 1.2887 | 63.1247 | | 0.3337 | 0.6130 | 1400 | 30.05 | 45.5 | 1.2645 | 62.6294 | | 0.2852 | 0.6567 | 1500 | 28.2 | 43.57 | 1.2972 | 68.6628 | | 0.2583 | 0.7005 | 1600 | 28.21 | 45.06 | 1.2716 | 73.6155 | | 0.2016 | 0.7443 | 1700 | 27.55 | 43.21 | 1.3346 | 74.3809 | | 0.1883 | 0.7881 | 1800 | 21.45 | 41.83 | 1.3124 | 94.1018 | | 0.1514 | 0.8319 | 1900 | 28.2 | 44.09 | 1.3178 | 63.7551 | | 0.1311 | 0.8757 | 2000 | 27.33 | 43.25 | 1.3246 | 74.3359 | | 0.1128 | 0.9194 | 2100 | 25.21 | 42.93 | 1.3464 | 83.2508 | | 0.0994 | 0.9632 | 2200 | 30.51 | 45.74 | 1.3315 | 64.7456 | | 0.0512 | 1.0070 | 2300 | 30.89 | 46.44 | 1.3377 | 63.3498 | | 0.0447 | 1.0508 | 2400 | 28.72 | 44.36 | 1.3587 | 64.3404 | | 0.0368 | 1.0946 | 2500 | 31.53 | 46.56 | 1.3619 | 61.9541 | | 0.0281 | 1.1384 | 2600 | 30.98 | 46.45 | 1.3596 | 70.4638 | | 0.0273 | 1.1821 | 2700 | 32.09 | 46.85 | 1.3656 | 62.1792 | | 0.0287 | 1.2259 | 2800 | 32.57 | 47.04 | 1.3547 | 62.0891 | | 0.025 | 1.2697 | 2900 | 26.94 | 45.43 | 1.3539 | 81.1796 | | 0.0263 | 1.3135 | 3000 | 30.11 | 46.73 | 1.3512 | 71.4993 | | 0.0301 | 1.3573 | 3100 | 1.3510| 31.14 | 46.93 | 62.0891 | | 0.0263 | 1.4011 | 3200 | 1.3853| 31.64 | 46.98 | 61.6389 | | 0.027 | 1.4448 | 3300 | 1.4148| 29.63 | 45.91 | 65.1058 | | 0.0286 | 1.4886 | 3400 | 1.3828| 30.12 | 46.2 | 62.7195 | | 0.0218 | 1.5324 | 3500 | 1.3890| 30.41 | 46.28 | 64.8807 | | 0.0231 | 1.5762 | 3600 | 1.3898| 31.05 | 46.72 | 63.3498 | | 0.0193 | 1.6200 | 3700 | 1.3836| 30.05 | 45.7 | 62.4944 | | 0.0184 | 1.6637 | 3800 | 1.3732| 30.95 | 47.17 | 61.8640 | | 0.0168 | 1.7075 | 3900 | 1.3780| 30.9 | 46.91 | 62.1342 | | 0.0168 | 1.7513 | 4000 | 1.3822| 30.9 | 46.57 | 62.2692 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1