--- language: - ga - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - ymoslem/IWSLT2023-GA-EN - ymoslem/FLEURS-GA-EN - ymoslem/BitesizeIrish-GA-EN - ymoslem/SpokenWords-GA-EN-MTed - ymoslem/Tatoeba-Speech-Irish - ymoslem/Wikimedia-Speech-Irish metrics: - bleu - wer model-index: - name: Whisper Small GA-EN Speech Translation results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia, normalized type: ymoslem/IWSLT2023-GA-EN metrics: - name: Bleu type: bleu value: 30.66 - name: Wer type: wer value: 65.46600630346691 --- # Whisper Small GA-EN Speech Translation This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia as well as a copy of the dataset with noise reduction and normalization (for both train and test) dataset. The datasets were processed with noise reduction and normalization (both the train and test splits). It achieves the following results on the evaluation set: - Loss: 1.3339 - Bleu: 30.66 - Chrf: 46.99 - Wer: 65.4660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.01 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer | |:-------------:|:-----:|:----:|:-----:|:-----:|:---------------:|:--------:| | 1.41 | 0.07 | 100 | 9.78 | 25.23 | 1.8782 | 96.3980 | | 1.2436 | 0.13 | 200 | 10.23 | 28.66 | 1.8301 | 125.9343 | | 1.593 | 0.2 | 300 | 9.53 | 30.7 | 1.7066 | 137.1454 | | 1.9589 | 0.26 | 400 | 12.08 | 32.94 | 1.5629 | 109.3652 | | 1.8174 | 0.33 | 500 | 13.73 | 34.5 | 1.5154 | 123.5930 | | 1.6775 | 0.39 | 600 | 15.8 | 35.68 | 1.5220 | 102.2062 | | 1.7074 | 0.46 | 700 | 16.62 | 37.96 | 1.4570 | 100.5853 | | 1.5793 | 0.53 | 800 | 24.5 | 39.91 | 1.4265 | 71.3643 | | 1.3708 | 0.59 | 900 | 24.35 | 42.26 | 1.3845 | 73.7956 | | 1.3217 | 0.66 | 1000 | 19.34 | 41.3 | 1.3662 | 87.7533 | | 1.2572 | 0.72 | 1100 | 21.59 | 41.35 | 1.3529 | 88.4286 | | 1.1447 | 0.79 | 1200 | 28.39 | 44.99 | 1.3228 | 65.9163 | | 1.1544 | 0.85 | 1300 | 23.69 | 43.07 | 1.2972 | 80.1891 | | 1.0291 | 0.92 | 1400 | 29.36 | 45.45 | 1.2828 | 70.9590 | | 0.9394 | 0.98 | 1500 | 26.44 | 44.0 | 1.2812 | 74.1558 | | 0.3764 | 1.05 | 1600 | 26.95 | 44.82 | 1.3248 | 73.8406 | | 0.3338 | 1.12 | 1700 | 26.5 | 44.96 | 1.3212 | 77.3976 | | 0.3148 | 1.18 | 1800 | 29.57 | 46.31 | 1.3188 | 66.7267 | | 0.3206 | 1.25 | 1900 | 30.87 | 47.21 | 1.3050 | 64.4755 | | 0.3069 | 1.31 | 2000 | 30.15 | 46.19 | 1.3053 | 65.6911 | | 0.3342 | 1.38 | 2100 | 1.3506| 24.14 | 44.12 | 77.2625 | | 0.3125 | 1.44 | 2200 | 1.3369| 30.21 | 46.08 | 63.9802 | | 0.319 | 1.51 | 2300 | 1.3601| 27.71 | 45.45 | 69.9235 | | 0.3067 | 1.58 | 2400 | 1.3473| 26.92 | 45.73 | 69.3381 | | 0.2621 | 1.64 | 2500 | 1.3354| 28.36 | 46.14 | 66.9068 | | 0.2709 | 1.71 | 2600 | 1.3339| 28.75 | 45.47 | 65.2859 | | 0.2644 | 1.77 | 2700 | 1.3100| 28.84 | 47.35 | 65.8262 | | 0.2511 | 1.84 | 2800 | 1.3261| 29.41 | 47.31 | 69.4732 | | 0.2232 | 1.9 | 2900 | 1.3382| 30.79 | 46.63 | 64.1153 | | 0.236 | 1.97 | 3000 | 1.3339| 30.66 | 46.99 | 65.4660 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2