File size: 4,651 Bytes
bbc0fa9 a98035b bbc0fa9 a98035b bbc0fa9 a98035b 439a972 a98035b bbc0fa9 a98035b bbc0fa9 a98035b 439a972 a98035b bbc0fa9 a681414 3d596dd bbc0fa9 a98035b bbc0fa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
metrics:
- bleu
- wer
model-index:
- name: Whisper Small GA-EN Speech Translation
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia, normalized
type: ymoslem/IWSLT2023-GA-EN
metrics:
- name: Bleu
type: bleu
value: 30.66
- name: Wer
type: wer
value: 65.46600630346691
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small GA-EN Speech Translation
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia as well as a copy of the dataset with noise reduction and normalization (for both train and test) dataset.
The datasets were processed with noise reduction and normalization (both the train and test splits).
It achieves the following results on the evaluation set:
- Loss: 1.3339
- Bleu: 30.66
- Chrf: 46.99
- Wer: 65.4660
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.01
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:-----:|:-----:|:---------------:|:--------:|
| 1.41 | 0.07 | 100 | 9.78 | 25.23 | 1.8782 | 96.3980 |
| 1.2436 | 0.13 | 200 | 10.23 | 28.66 | 1.8301 | 125.9343 |
| 1.593 | 0.2 | 300 | 9.53 | 30.7 | 1.7066 | 137.1454 |
| 1.9589 | 0.26 | 400 | 12.08 | 32.94 | 1.5629 | 109.3652 |
| 1.8174 | 0.33 | 500 | 13.73 | 34.5 | 1.5154 | 123.5930 |
| 1.6775 | 0.39 | 600 | 15.8 | 35.68 | 1.5220 | 102.2062 |
| 1.7074 | 0.46 | 700 | 16.62 | 37.96 | 1.4570 | 100.5853 |
| 1.5793 | 0.53 | 800 | 24.5 | 39.91 | 1.4265 | 71.3643 |
| 1.3708 | 0.59 | 900 | 24.35 | 42.26 | 1.3845 | 73.7956 |
| 1.3217 | 0.66 | 1000 | 19.34 | 41.3 | 1.3662 | 87.7533 |
| 1.2572 | 0.72 | 1100 | 21.59 | 41.35 | 1.3529 | 88.4286 |
| 1.1447 | 0.79 | 1200 | 28.39 | 44.99 | 1.3228 | 65.9163 |
| 1.1544 | 0.85 | 1300 | 23.69 | 43.07 | 1.2972 | 80.1891 |
| 1.0291 | 0.92 | 1400 | 29.36 | 45.45 | 1.2828 | 70.9590 |
| 0.9394 | 0.98 | 1500 | 26.44 | 44.0 | 1.2812 | 74.1558 |
| 0.3764 | 1.05 | 1600 | 26.95 | 44.82 | 1.3248 | 73.8406 |
| 0.3338 | 1.12 | 1700 | 26.5 | 44.96 | 1.3212 | 77.3976 |
| 0.3148 | 1.18 | 1800 | 29.57 | 46.31 | 1.3188 | 66.7267 |
| 0.3206 | 1.25 | 1900 | 30.87 | 47.21 | 1.3050 | 64.4755 |
| 0.3069 | 1.31 | 2000 | 30.15 | 46.19 | 1.3053 | 65.6911 |
| 0.3342 | 1.38 | 2100 | 1.3506| 24.14 | 44.12 | 77.2625 |
| 0.3125 | 1.44 | 2200 | 1.3369| 30.21 | 46.08 | 63.9802 |
| 0.319 | 1.51 | 2300 | 1.3601| 27.71 | 45.45 | 69.9235 |
| 0.3067 | 1.58 | 2400 | 1.3473| 26.92 | 45.73 | 69.3381 |
| 0.2621 | 1.64 | 2500 | 1.3354| 28.36 | 46.14 | 66.9068 |
| 0.2709 | 1.71 | 2600 | 1.3339| 28.75 | 45.47 | 65.2859 |
| 0.2644 | 1.77 | 2700 | 1.3100| 28.84 | 47.35 | 65.8262 |
| 0.2511 | 1.84 | 2800 | 1.3261| 29.41 | 47.31 | 69.4732 |
| 0.2232 | 1.9 | 2900 | 1.3382| 30.79 | 46.63 | 64.1153 |
| 0.236 | 1.97 | 3000 | 1.3339| 30.66 | 46.99 | 65.4660 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|