--- language: - ga - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - ymoslem/IWSLT2023-GA-EN - ymoslem/FLEURS-GA-EN - ymoslem/BitesizeIrish-GA-EN - ymoslem/SpokenWords-GA-EN-MTed metrics: - bleu - wer model-index: - name: Whisper Small GA-EN Speech Translation Raw + warmup_ratio=0.01 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IWSLT-2023, FLEURS, BiteSize, and SpokenWords type: ymoslem/IWSLT2023-GA-EN metrics: - name: Bleu type: bleu value: 30.07 - name: Wer type: wer value: 66.32147681224674 --- # Whisper Small GA-EN Speech Translation Raw + warmup_ratio=0.01 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, and SpokenWords dataset. It achieves the following results on the evaluation set: - Loss: 1.7281 - Bleu: 30.07 - Chrf: 46.7 - Wer: 66.3215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer | |:-------------:|:------:|:----:|:---------------:|:-----:|:-----:|:--------:| | 2.1013 | 0.2155 | 100 | 1.8575 | 8.31 | 24.75 | 116.5241 | | 1.5495 | 0.4310 | 200 | 1.5721 | 14.29 | 33.25 | 105.0428 | | 1.3385 | 0.6466 | 300 | 1.5329 | 20.71 | 38.26 | 86.9428 | | 1.071 | 0.8621 | 400 | 1.4540 | 20.37 | 39.28 | 85.1418 | | 0.4771 | 1.0776 | 500 | 1.4936 | 18.05 | 39.17 | 93.8316 | | 0.4685 | 1.2931 | 600 | 1.5303 | 24.36 | 39.36 | 75.6866 | | 0.4477 | 1.5086 | 700 | 1.5242 | 22.93 | 42.01 | 80.3242 | | 0.4238 | 1.7241 | 800 | 1.5052 | 26.32 | 43.01 | 68.8879 | | 0.3802 | 1.9397 | 900 | 1.5171 | 25.94 | 41.44 | 73.7956 | | 0.1429 | 2.1552 | 1000 | 1.5741 | 28.83 | 43.83 | 65.4660 | | 0.1607 | 2.3707 | 1100 | 1.6029 | 27.67 | 43.2 | 64.9257 | | 0.1513 | 2.5862 | 1200 | 1.6130 | 28.61 | 44.28 | 66.1864 | | 0.137 | 2.8017 | 1300 | 1.6087 | 21.97 | 40.99 | 89.4642 | | 0.112 | 3.0172 | 1400 | 1.6146 | 28.74 | 44.01 | 65.9613 | | 0.0717 | 3.2328 | 1500 | 1.6156 | 27.3 | 42.78 | 70.0585 | | 0.0596 | 3.4483 | 1600 | 1.6381 | 27.31 | 45.58 | 69.6983 | | 0.064 | 3.6638 | 1700 | 1.6262 | 29.73 | 45.88 | 65.9163 | | 0.0642 | 3.8793 | 1800 | 1.6798 | 30.78 | 46.13 | 68.2575 | | 0.0335 | 4.0948 | 1900 | 1.6854 | 29.55 | 45.06 | 67.8523 | | 0.0366 | 4.3103 | 2000 | 1.6963 | 28.83 | 44.42 | 68.8879 | | 0.036 | 4.5259 | 2100 | 1.7062 | 28.05 | 43.79 | 69.6983 | | 0.0259 | 4.7414 | 2200 | 1.7279 | 28.75 | 45.25 | 68.3926 | | 0.0353 | 4.9569 | 2300 | 1.7084 | 29.7 | 46.13 | 66.3665 | | 0.0138 | 5.1724 | 2400 | 1.6906 | 30.81 | 46.26 | 64.1603 | | 0.0156 | 5.3879 | 2500 | 1.7135 | 29.09 | 45.94 | 67.4471 | | 0.0133 | 5.6034 | 2600 | 1.7311 | 29.86 | 45.61 | 65.5110 | | 0.0161 | 5.8190 | 2700 | 1.7067 | 29.5 | 45.22 | 67.0869 | | 0.0098 | 6.0345 | 2800 | 1.7038 | 30.32 | 46.6 | 65.3309 | | 0.008 | 6.25 | 2900 | 1.7261 | 29.88 | 46.41 | 66.8167 | | 0.0045 | 6.4655 | 3000 | 1.7281 | 30.07 | 46.7 | 66.3215 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1