File size: 5,261 Bytes
ad9baae
fe010a1
 
 
ad9baae
 
 
 
fe010a1
 
 
 
 
 
 
 
80d1499
ad9baae
fe010a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80d1499
ad9baae
 
 
 
 
fe010a1
ad9baae
80d1499
 
 
 
 
 
ad9baae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80d1499
 
 
 
 
ad9baae
 
 
 
 
 
 
 
 
 
 
 
 
fe010a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80d1499
 
 
 
 
fe010a1
 
ad9baae
 
 
 
 
80d1499
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
metrics:
- bleu
- wer
- chrf
model-index:
- name: Whisper Small GA-EN Speech Translation
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: IWSLT-2023, FLEURS, BiteSize, SpokenWords
      type: ymoslem/IWSLT2023-GA-EN
    metrics:
    - name: Bleu
      type: bleu
      value: 26.85
    - name: Wer
      type: wer
      value: 73.52543899144528
library_name: transformers
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small GA-EN Speech Translation

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, and SpokenWords datasets.
The best model (this version) is at checkpoint 3400, epoch 3.67, and it achieves the following results on the evaluation set:
- Loss: 1.5752
- Bleu: 30.77
- Chrf: 46.43
- Wer: 64.6556

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Experiment

- language=English
- +more steps

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.03
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Bleu  | Chrf  | Validation Loss | Wer      |
|:-------------:|:-----:|:----:|:-----:|:-----:|:---------------:|:--------:|
| 2.4954        | 0.11  | 100  | 3.7   | 18.03 | 2.1286          | 179.7839 |
| 2.045         | 0.22  | 200  | 12.65 | 25.53 | 1.8146          | 100.9005 |
| 1.7928        | 0.32  | 300  | 13.78 | 30.2  | 1.7253          | 101.9811 |
| 1.6615        | 0.43  | 400  | 15.8  | 31.88 | 1.6834          | 92.5259  |
| 1.4491        | 0.54  | 500  | 15.61 | 36.27 | 1.5971          | 107.3841 |
| 1.2074        | 0.65  | 600  | 19.92 | 36.31 | 1.5939          | 84.3314  |
| 1.2308        | 0.76  | 700  | 20.37 | 38.72 | 1.5234          | 84.8267  |
| 1.107         | 0.86  | 800  | 21.35 | 37.87 | 1.5460          | 82.8906  |
| 0.9491        | 0.97  | 900  | 21.06 | 40.74 | 1.5161          | 82.5754  |
| 0.384         | 1.08  | 1000 | 23.24 | 41.98 | 1.4927          | 82.2152  |
| 0.362         | 1.19  | 1100 | 23.19 | 42.24 | 1.5567          | 80.2792  |
| 0.3756        | 1.29  | 1200 | 27.83 | 43.8  | 1.5265          | 69.2481  |
| 0.3401        | 1.4   | 1300 | 21.79 | 41.66 | 1.5522          | 92.3908  |
| 0.3346        | 1.51  | 1400 | 24.61 | 42.15 | 1.5085          | 75.4615  |
| 0.3101        | 1.62  | 1500 | 26.67 | 43.41 | 1.4933          | 70.7789  |
| 0.3231        | 1.73  | 1600 | 27.95 | 42.82 | 1.4979          | 68.3026  |
| 0.2665        | 1.83  | 1700 | 28.5  | 43.76 | 1.4977          | 68.1225  |
| 0.2704        | 1.94  | 1800 | 28.15 | 43.87 | 1.5063          | 68.8429  |
| 0.0769        | 2.05  | 1900 | 25.76 | 43.22 | 1.5162          | 77.6227  |
| 0.0597        | 2.16  | 2000 | 25.04 | 43.15 | 1.5216          | 79.0635  |
| 0.0743        | 2.27  | 2100 | 27.85 | 44.43 | 1.5313          | 68.3926  |
| 0.0878        | 2.37  | 2200 | 27.54 | 43.96 | 1.5495          | 68.3476  |
| 0.0712        | 2.48  | 2300 | 28.28 | 44.39 | 1.5355          | 65.8712  |
| 0.0789        | 2.59  | 2400 | 28.64 | 44.75 | 1.5277          | 65.7812  |
| 0.073         | 2.7   | 2500 | 29.09 | 44.65 | 1.5327          | 65.7812  |
| 0.073         | 2.8   | 2600 | 25.26 | 43.44 | 1.5304          | 78.2981  |
| 0.0697        | 2.91  | 2700 | 25.71 | 43.02 | 1.5460          | 78.4782  |
| 0.0398        | 3.02  | 2800 | 28.26 | 44.71 | 1.5580          | 72.8501  |
| 0.0302        | 3.13  | 2900 | 30.25 | 45.46 | 1.5688          | 66.1414  |
| 0.0424        | 3.24  | 3000 | 29.88 | 45.21 | 1.5693          | 66.0964  |
| 0.0397        | 3.34  | 3100 | 30.01 | 45.85 | 1.5934          | 65.6911  |
| 0.0346        | 3.45  | 3200 | 30.2  | 45.8  | 1.5818          | 65.8262  |
| 0.032         | 3.56  | 3300 | 29.81 | 46.5  | 1.5823          | 66.7267  |
| 0.0348        | 3.67  | 3400 | 30.77 | 46.43 | 1.5752          | 64.6556  |
| 0.0277        | 3.78  | 3500 | 30.3  | 46.02 | 1.5791          | 64.6105  |
| 0.0364        | 3.88  | 3600 | 29.92 | 45.38 | 1.5895          | 65.0608  |
| 0.0398        | 3.99  | 3700 | 27.79 | 44.59 | 1.6167          | 68.2575  |
| 0.0152        | 4.1   | 3800 | 28.42 | 44.83 | 1.6241          | 67.5822  |
| 0.0201        | 4.21  | 3900 | 29.02 | 45.11 | 1.6243          | 67.4921  |
| 0.0168        | 4.31  | 4000 | 26.85 | 44.41 | 1.6195          | 73.5254  |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2