File size: 5,318 Bytes
f17a1c9 aef0dd7 f17a1c9 aef0dd7 f17a1c9 aef0dd7 f17a1c9 aef0dd7 f17a1c9 aef0dd7 f17a1c9 aef0dd7 f17a1c9 aef0dd7 f17a1c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
- ymoslem/EUbookshop-Speech-Irish
metrics:
- bleu
- wer
model-index:
- name: Whisper Medium GA-EN Speech Translation
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, Wikimedia, and EUbookshop
type: ymoslem/IWSLT2023-GA-EN
metrics:
- name: Bleu
type: bleu
value: 31.02
- name: Wer
type: wer
value: 68.52769022962629
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium GA-EN Speech Translation
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, Wikimedia, and EUbookshop dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0576
- Bleu: 31.02
- Chrf: 53.51
- Wer: 68.5277
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer |
|:-------------:|:------:|:----:|:---------------:|:-----:|:-----:|:--------:|
| 2.5374 | 0.0138 | 100 | 2.1201 | 2.56 | 18.92 | 222.4674 |
| 2.446 | 0.0276 | 200 | 2.1960 | 3.07 | 20.56 | 170.5088 |
| 2.2819 | 0.0414 | 300 | 1.9811 | 5.87 | 25.17 | 114.5880 |
| 2.1904 | 0.0552 | 400 | 1.9974 | 8.41 | 25.65 | 99.1896 |
| 2.026 | 0.0690 | 500 | 1.8961 | 7.99 | 27.64 | 130.7069 |
| 2.0448 | 0.0828 | 600 | 1.9410 | 9.15 | 27.78 | 104.9077 |
| 1.8606 | 0.0966 | 700 | 1.8451 | 9.57 | 29.34 | 110.4908 |
| 1.9887 | 0.1103 | 800 | 1.7419 | 13.44 | 32.32 | 84.3314 |
| 1.8633 | 0.1241 | 900 | 1.7376 | 13.43 | 31.58 | 102.1162 |
| 1.7576 | 0.1379 | 1000 | 1.6879 | 11.9 | 32.68 | 106.6186 |
| 1.7142 | 0.1517 | 1100 | 1.7571 | 12.4 | 33.66 | 102.6114 |
| 1.7168 | 0.1655 | 1200 | 1.6003 | 17.35 | 36.55 | 87.9784 |
| 1.6741 | 0.1793 | 1300 | 1.5883 | 15.41 | 35.46 | 92.8411 |
| 1.6534 | 0.1931 | 1400 | 1.5366 | 17.12 | 37.24 | 90.2296 |
| 1.58 | 0.2069 | 1500 | 1.5141 | 17.49 | 38.5 | 92.1207 |
| 1.403 | 0.2207 | 1600 | 1.4606 | 16.78 | 39.13 | 88.9689 |
| 1.3806 | 0.2345 | 1700 | 1.4263 | 19.26 | 40.02 | 86.7177 |
| 1.5111 | 0.2483 | 1800 | 1.4060 | 18.4 | 39.47 | 92.2557 |
| 1.4261 | 0.2621 | 1900 | 1.3911 | 21.19 | 42.13 | 78.7033 |
| 1.2974 | 0.2759 | 2000 | 1.3871 | 15.6 | 38.66 | 100.3152 |
| 1.2694 | 0.2897 | 2100 | 1.3527 | 16.21 | 39.99 | 91.2652 |
| 1.204 | 0.3034 | 2200 | 1.3232 | 20.2 | 41.18 | 86.8978 |
| 1.1922 | 0.3172 | 2300 | 1.3338 | 16.44 | 40.85 | 103.1968 |
| 1.1237 | 0.3310 | 2400 | 1.2830 | 19.29 | 43.73 | 94.4620 |
| 1.0989 | 0.3448 | 2500 | 1.2844 | 25.11 | 46.84 | 75.0563 |
| 1.0766 | 0.3586 | 2600 | 1.2578 | 23.87 | 46.1 | 74.5160 |
| 1.0432 | 0.3724 | 2700 | 1.2414 | 22.31 | 44.91 | 86.9878 |
| 1.1588 | 0.3862 | 2800 | 1.2051 | 23.32 | 45.94 | 77.1724 |
| 1.0062 | 0.4 | 2900 | 1.2059 | 26.15 | 48.27 | 69.4282 |
| 0.9178 | 0.4138 | 3000 | 1.1756 | 29.13 | 48.92 | 64.7456 |
| 0.9108 | 0.4276 | 3100 | 1.1665 | 28.34 | 48.9 | 67.2220 |
| 0.9868 | 0.4414 | 3200 | 1.1489 | 25.64 | 48.93 | 75.3264 |
| 0.9563 | 0.4552 | 3300 | 1.1181 | 27.58 | 49.67 | 71.8145 |
| 0.9138 | 0.4690 | 3400 | 1.1247 | 28.37 | 50.96 | 71.4543 |
| 0.8508 | 0.4828 | 3500 | 1.1007 | 29.75 | 51.41 | 68.3476 |
| 0.836 | 0.4966 | 3600 | 1.1114 | 30.99 | 52.2 | 66.5916 |
| 0.8435 | 0.5103 | 3700 | 1.0782 | 30.64 | 52.77 | 68.2125 |
| 0.8323 | 0.5241 | 3800 | 1.0744 | 29.78 | 52.94 | 68.9779 |
| 0.818 | 0.5379 | 3900 | 1.0639 | 31.23 | 53.21 | 67.7623 |
| 0.8095 | 0.5517 | 4000 | 1.0576 | 31.02 | 53.51 | 68.5277 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.2.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|