File size: 5,261 Bytes
bf2ce7f
dcf308d
 
 
bf2ce7f
dcf308d
bf2ce7f
 
dcf308d
 
 
 
 
 
 
 
 
 
bf2ce7f
dcf308d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2ce7f
 
 
 
 
dcf308d
bf2ce7f
dcf308d
 
 
 
 
 
bf2ce7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcf308d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf2ce7f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
language:
- ga
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- ymoslem/IWSLT2023-GA-EN
- ymoslem/FLEURS-GA-EN
- ymoslem/BitesizeIrish-GA-EN
- ymoslem/SpokenWords-GA-EN-MTed
- ymoslem/Tatoeba-Speech-Irish
- ymoslem/Wikimedia-Speech-Irish
metrics:
- bleu
- wer
model-index:
- name: Whisper Medium GA-EN Speech Translation
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia
      type: ymoslem/IWSLT2023-GA-EN
    metrics:
    - name: Bleu
      type: bleu
      value: 32.53
    - name: Wer
      type: wer
      value: 62.809545249887435
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium GA-EN Speech Translation

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2087
- Bleu: 32.53
- Chrf: 52.88
- Wer: 62.8095

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Bleu  | Chrf  | Wer      |
|:-------------:|:------:|:----:|:---------------:|:-----:|:-----:|:--------:|
| 2.5164        | 0.0328 | 100  | 2.0060          | 2.56  | 17.46 | 162.9896 |
| 2.656         | 0.0657 | 200  | 2.0232          | 8.49  | 26.0  | 99.5498  |
| 2.5156        | 0.0985 | 300  | 1.9253          | 7.55  | 25.1  | 141.2877 |
| 2.4722        | 0.1314 | 400  | 1.8289          | 12.52 | 30.49 | 90.4548  |
| 2.3376        | 0.1642 | 500  | 1.6839          | 17.39 | 33.23 | 81.1796  |
| 2.1733        | 0.1970 | 600  | 1.7342          | 9.62  | 32.48 | 137.9559 |
| 2.3382        | 0.2299 | 700  | 1.6570          | 12.54 | 34.43 | 112.2467 |
| 2.0041        | 0.2627 | 800  | 1.6048          | 17.55 | 36.73 | 85.1418  |
| 2.1142        | 0.2956 | 900  | 1.6256          | 17.58 | 35.74 | 82.7105  |
| 2.024         | 0.3284 | 1000 | 1.5861          | 14.4  | 37.22 | 86.7177  |
| 1.7556        | 0.3612 | 1100 | 1.5415          | 17.21 | 38.88 | 84.5115  |
| 1.6904        | 0.3941 | 1200 | 1.4902          | 19.6  | 38.84 | 85.3670  |
| 1.674         | 0.4269 | 1300 | 1.4748          | 20.33 | 41.3  | 88.3836  |
| 1.6899        | 0.4598 | 1400 | 1.4479          | 22.74 | 43.25 | 80.9995  |
| 1.5234        | 0.4926 | 1500 | 1.3763          | 20.13 | 42.08 | 80.6844  |
| 1.364         | 0.5255 | 1600 | 1.4164          | 23.12 | 41.78 | 72.9851  |
| 1.5267        | 0.5583 | 1700 | 1.3855          | 19.94 | 41.63 | 91.7605  |
| 1.4282        | 0.5911 | 1800 | 1.3729          | 23.96 | 44.84 | 74.6961  |
| 1.3611        | 0.6240 | 1900 | 1.3562          | 23.1  | 45.41 | 81.8100  |
| 1.1396        | 0.6568 | 2000 | 1.3131          | 27.9  | 46.89 | 67.2670  |
| 1.1849        | 0.6897 | 2100 | 1.3483          | 24.38 | 45.25 | 75.8667  |
| 1.0871        | 0.7225 | 2200 | 1.2848          | 28.64 | 48.93 | 66.6817  |
| 1.1822        | 0.7553 | 2300 | 1.2782          | 28.41 | 47.25 | 68.6628  |
| 1.1272        | 0.7882 | 2400 | 1.2549          | 27.24 | 48.57 | 75.9568  |
| 1.0241        | 0.8210 | 2500 | 1.2922          | 25.74 | 47.44 | 74.4710  |
| 0.9629        | 0.8539 | 2600 | 1.3209          | 23.93 | 44.61 | 82.1252  |
| 0.8251        | 0.8867 | 2700 | 1.2273          | 32.21 | 51.64 | 65.5110  |
| 0.7921        | 0.9195 | 2800 | 1.2881          | 26.38 | 48.31 | 80.2792  |
| 0.8873        | 0.9524 | 2900 | 1.2268          | 26.57 | 50.09 | 77.1724  |
| 0.7967        | 0.9852 | 3000 | 1.2036          | 29.35 | 51.53 | 69.6533  |
| 0.3119        | 1.0181 | 3100 | 1.2231          | 31.77 | 51.57 | 62.3143  |
| 0.3009        | 1.0509 | 3200 | 1.2446          | 31.8  | 50.44 | 61.8190  |
| 0.2855        | 1.0837 | 3300 | 1.2240          | 30.48 | 50.86 | 66.7717  |
| 0.2535        | 1.1166 | 3400 | 1.2287          | 31.96 | 52.82 | 63.3949  |
| 0.2162        | 1.1494 | 3500 | 1.2398          | 33.91 | 52.17 | 61.3688  |
| 0.2307        | 1.1823 | 3600 | 1.2280          | 32.11 | 51.67 | 64.7456  |
| 0.2184        | 1.2151 | 3700 | 1.2149          | 34.59 | 53.32 | 59.9730  |
| 0.2365        | 1.2479 | 3800 | 1.2044          | 32.51 | 52.98 | 62.3593  |
| 0.1958        | 1.2808 | 3900 | 1.2116          | 32.45 | 52.86 | 63.1697  |
| 0.2081        | 1.3136 | 4000 | 1.2087          | 32.53 | 52.88 | 62.8095  |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.2.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1