--- language: - ga - en license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - ymoslem/IWSLT2023-GA-EN - ymoslem/FLEURS-GA-EN - ymoslem/BitesizeIrish-GA-EN - ymoslem/SpokenWords-GA-EN-MTed metrics: - bleu - wer model-index: - name: Whisper Medium GA-EN Speech Translation Raw results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IWSLT-2023, FLEURS, BiteSize, and SpokenWords type: ymoslem/IWSLT2023-GA-EN metrics: - name: Bleu type: bleu value: 30.23 - name: Wer type: wer value: 65.37595677622693 --- # Whisper Medium GA-EN Speech Translation Raw This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the IWSLT-2023, FLEURS, BiteSize, and SpokenWords dataset. It achieves the following results on the evaluation set: - Loss: 1.4321 - Bleu: 30.23 - Chrf: 48.18 - Wer: 65.3760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Chrf | Wer | |:-------------:|:------:|:----:|:---------------:|:-----:|:-----:|:--------:| | 2.6013 | 0.0539 | 100 | 2.2401 | 3.18 | 17.57 | 139.4417 | | 2.5749 | 0.1079 | 200 | 3.0398 | 0.0 | 3.87 | 100.4052 | | 2.3449 | 0.1618 | 300 | 2.0560 | 7.53 | 24.09 | 121.0266 | | 2.0392 | 0.2157 | 400 | 1.9721 | 10.7 | 29.63 | 109.7253 | | 1.9155 | 0.2697 | 500 | 1.9402 | 16.73 | 31.59 | 81.9901 | | 1.9148 | 0.3236 | 600 | 1.7868 | 11.12 | 32.9 | 117.1544 | | 1.698 | 0.3776 | 700 | 1.7244 | 20.14 | 36.31 | 83.8811 | | 1.7283 | 0.4315 | 800 | 1.6586 | 16.74 | 34.0 | 94.5070 | | 1.5213 | 0.4854 | 900 | 1.6387 | 19.49 | 38.29 | 84.2413 | | 1.3123 | 0.5394 | 1000 | 1.6292 | 22.27 | 41.45 | 80.2792 | | 1.1584 | 0.5933 | 1100 | 1.5900 | 25.48 | 42.03 | 74.2008 | | 1.1734 | 0.6472 | 1200 | 1.5495 | 17.77 | 40.1 | 106.9338 | | 1.2271 | 0.7012 | 1300 | 1.4978 | 21.7 | 43.63 | 84.2413 | | 1.0872 | 0.7551 | 1400 | 1.4690 | 25.34 | 43.98 | 74.2909 | | 0.9331 | 0.8091 | 1500 | 1.4688 | 20.09 | 43.14 | 90.5448 | | 0.7861 | 0.8630 | 1600 | 1.4284 | 26.49 | 46.76 | 76.4971 | | 0.8392 | 0.9169 | 1700 | 1.3909 | 27.22 | 46.91 | 73.3904 | | 0.7236 | 0.9709 | 1800 | 1.4349 | 26.98 | 46.01 | 74.2008 | | 0.2741 | 1.0248 | 1900 | 1.4279 | 28.92 | 47.63 | 68.3476 | | 0.2782 | 1.0787 | 2000 | 1.4321 | 30.23 | 48.18 | 65.3760 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1