--- language: - ga - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - ymoslem/IWSLT2023-GA-EN - ymoslem/FLEURS-GA-EN - ymoslem/BitesizeIrish-GA-EN - ymoslem/SpokenWords-GA-EN-MTed metrics: - bleu - wer model-index: - name: Whisper Medium GA-EN Speech Translation results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IWSLT-2023, FLEURS, BiteSize, and SpokenWords type: ymoslem/IWSLT2023-GA-EN metrics: - name: Bleu type: bleu value: 27.06 - name: Wer type: wer value: 73.4804142278253 --- # Whisper Medium GA-EN Speech Translation This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the IWSLT-2023, FLEURS, BiteSize, and SpokenWords dataset. It achieves the following results on the evaluation set: - Loss: 1.2998 - Bleu: 27.06 - Chrf: 47.61 - Wer: 73.4804 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer | |:-------------:|:-----:|:----:|:-----:|:-----:|:---------------:|:--------:| | 2.5227 | 0.05 | 100 | 1.05 | 12.82 | 2.4253 | 343.2238 | | 2.4775 | 0.11 | 200 | 10.04 | 24.39 | 2.0665 | 95.2724 | | 2.114 | 0.16 | 300 | 8.79 | 28.6 | 1.9792 | 141.9181 | | 1.9813 | 0.22 | 400 | 17.5 | 33.84 | 1.7596 | 82.8906 | | 1.6979 | 0.27 | 500 | 13.89 | 33.51 | 1.6820 | 115.0383 | | 1.7157 | 0.32 | 600 | 18.54 | 36.44 | 1.5795 | 91.4003 | | 1.3845 | 0.38 | 700 | 19.51 | 39.03 | 1.4989 | 88.7888 | | 1.3803 | 0.43 | 800 | 25.18 | 40.96 | 1.4176 | 69.5182 | | 1.1 | 0.49 | 900 | 28.98 | 44.78 | 1.3666 | 65.9613 | | 1.1843 | 0.54 | 1000 | 27.59 | 45.91 | 1.3298 | 70.4638 | | 1.1317 | 0.59 | 1100 | 1.5018| 20.22 | 41.14 | 86.9878 | | 1.071 | 0.65 | 1200 | 1.4600| 20.67 | 40.43 | 85.6371 | | 1.1542 | 0.7 | 1300 | 1.4114| 26.84 | 43.76 | 69.5182 | | 1.0729 | 0.76 | 1400 | 1.4056| 22.98 | 42.65 | 78.0729 | | 0.8747 | 0.81 | 1500 | 1.3537| 24.65 | 44.89 | 73.4804 | | 0.8626 | 0.86 | 1600 | 1.3391| 28.0 | 46.03 | 68.7978 | | 0.7643 | 0.92 | 1700 | 1.3250| 27.23 | 45.31 | 70.3287 | | 0.6971 | 0.97 | 1800 | 1.2795| 30.05 | 48.28 | 65.5110 | | 0.3055 | 1.02 | 1900 | 1.2994| 27.41 | 47.91 | 71.1842 | | 0.2801 | 1.08 | 2000 | 1.2998| 27.06 | 47.61 | 73.4804 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2