--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-us results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3541912632821724 --- # whisper-tiny-en-us This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7061 - Wer Ortho: 0.3640 - Wer: 0.3542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 2.1622 | 1.79 | 50 | 0.9646 | 0.4510 | 0.3908 | | 0.3628 | 3.57 | 100 | 0.5673 | 0.3812 | 0.3501 | | 0.131 | 5.36 | 150 | 0.5827 | 0.3714 | 0.3436 | | 0.0488 | 7.14 | 200 | 0.6058 | 0.3689 | 0.3383 | | 0.0144 | 8.93 | 250 | 0.6444 | 0.3671 | 0.3430 | | 0.0044 | 10.71 | 300 | 0.6652 | 0.3418 | 0.3282 | | 0.0021 | 12.5 | 350 | 0.6827 | 0.3405 | 0.3306 | | 0.0013 | 14.29 | 400 | 0.6956 | 0.3448 | 0.3341 | | 0.0011 | 16.07 | 450 | 0.7061 | 0.3640 | 0.3542 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3