yixuan-chia commited on
Commit
f6f27ea
·
verified ·
1 Parent(s): 9fa7867

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2846 -0
README.md ADDED
@@ -0,0 +1,2846 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m-long
3
+ license: apache-2.0
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - feature-extraction
8
+ - sentence-similarity
9
+ - mteb
10
+ - arctic
11
+ - snowflake-arctic-embed
12
+ - transformers.js
13
+ - llama-cpp
14
+ - gguf-my-repo
15
+ model-index:
16
+ - name: snowflake-arctic-m-long
17
+ results:
18
+ - task:
19
+ type: Classification
20
+ dataset:
21
+ name: MTEB AmazonCounterfactualClassification (en)
22
+ type: mteb/amazon_counterfactual
23
+ config: en
24
+ split: test
25
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
26
+ metrics:
27
+ - type: accuracy
28
+ value: 78.4776119402985
29
+ - type: ap
30
+ value: 42.34374238166049
31
+ - type: f1
32
+ value: 72.51164234732224
33
+ - task:
34
+ type: Classification
35
+ dataset:
36
+ name: MTEB AmazonPolarityClassification
37
+ type: mteb/amazon_polarity
38
+ config: default
39
+ split: test
40
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
41
+ metrics:
42
+ - type: accuracy
43
+ value: 78.7416
44
+ - type: ap
45
+ value: 73.12074819362377
46
+ - type: f1
47
+ value: 78.64057339708795
48
+ - task:
49
+ type: Classification
50
+ dataset:
51
+ name: MTEB AmazonReviewsClassification (en)
52
+ type: mteb/amazon_reviews_multi
53
+ config: en
54
+ split: test
55
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
56
+ metrics:
57
+ - type: accuracy
58
+ value: 39.926
59
+ - type: f1
60
+ value: 39.35531993117573
61
+ - task:
62
+ type: Retrieval
63
+ dataset:
64
+ name: MTEB ArguAna
65
+ type: mteb/arguana
66
+ config: default
67
+ split: test
68
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
69
+ metrics:
70
+ - type: map_at_1
71
+ value: 34.851
72
+ - type: map_at_10
73
+ value: 51.473
74
+ - type: map_at_100
75
+ value: 52.103
76
+ - type: map_at_1000
77
+ value: 52.105000000000004
78
+ - type: map_at_3
79
+ value: 46.776
80
+ - type: map_at_5
81
+ value: 49.617
82
+ - type: mrr_at_1
83
+ value: 35.491
84
+ - type: mrr_at_10
85
+ value: 51.73799999999999
86
+ - type: mrr_at_100
87
+ value: 52.37500000000001
88
+ - type: mrr_at_1000
89
+ value: 52.378
90
+ - type: mrr_at_3
91
+ value: 46.965
92
+ - type: mrr_at_5
93
+ value: 49.878
94
+ - type: ndcg_at_1
95
+ value: 34.851
96
+ - type: ndcg_at_10
97
+ value: 60.364
98
+ - type: ndcg_at_100
99
+ value: 62.888999999999996
100
+ - type: ndcg_at_1000
101
+ value: 62.946000000000005
102
+ - type: ndcg_at_3
103
+ value: 50.807
104
+ - type: ndcg_at_5
105
+ value: 55.901
106
+ - type: precision_at_1
107
+ value: 34.851
108
+ - type: precision_at_10
109
+ value: 8.855
110
+ - type: precision_at_100
111
+ value: 0.992
112
+ - type: precision_at_1000
113
+ value: 0.1
114
+ - type: precision_at_3
115
+ value: 20.839
116
+ - type: precision_at_5
117
+ value: 14.963999999999999
118
+ - type: recall_at_1
119
+ value: 34.851
120
+ - type: recall_at_10
121
+ value: 88.549
122
+ - type: recall_at_100
123
+ value: 99.21799999999999
124
+ - type: recall_at_1000
125
+ value: 99.644
126
+ - type: recall_at_3
127
+ value: 62.517999999999994
128
+ - type: recall_at_5
129
+ value: 74.822
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ name: MTEB ArxivClusteringP2P
134
+ type: mteb/arxiv-clustering-p2p
135
+ config: default
136
+ split: test
137
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
138
+ metrics:
139
+ - type: v_measure
140
+ value: 45.5554998405317
141
+ - task:
142
+ type: Clustering
143
+ dataset:
144
+ name: MTEB ArxivClusteringS2S
145
+ type: mteb/arxiv-clustering-s2s
146
+ config: default
147
+ split: test
148
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
149
+ metrics:
150
+ - type: v_measure
151
+ value: 35.614248811397005
152
+ - task:
153
+ type: Reranking
154
+ dataset:
155
+ name: MTEB AskUbuntuDupQuestions
156
+ type: mteb/askubuntudupquestions-reranking
157
+ config: default
158
+ split: test
159
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
160
+ metrics:
161
+ - type: map
162
+ value: 61.355489424753884
163
+ - type: mrr
164
+ value: 75.49443784900849
165
+ - task:
166
+ type: STS
167
+ dataset:
168
+ name: MTEB BIOSSES
169
+ type: mteb/biosses-sts
170
+ config: default
171
+ split: test
172
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
173
+ metrics:
174
+ - type: cos_sim_pearson
175
+ value: 89.17311056578292
176
+ - type: cos_sim_spearman
177
+ value: 88.24237210809322
178
+ - type: euclidean_pearson
179
+ value: 87.3188065853646
180
+ - type: euclidean_spearman
181
+ value: 88.24237210809322
182
+ - type: manhattan_pearson
183
+ value: 86.89499710049658
184
+ - type: manhattan_spearman
185
+ value: 87.85441146091777
186
+ - task:
187
+ type: Classification
188
+ dataset:
189
+ name: MTEB Banking77Classification
190
+ type: mteb/banking77
191
+ config: default
192
+ split: test
193
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
194
+ metrics:
195
+ - type: accuracy
196
+ value: 80.26298701298703
197
+ - type: f1
198
+ value: 79.68356764080303
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ name: MTEB BigPatentClustering
203
+ type: jinaai/big-patent-clustering
204
+ config: default
205
+ split: test
206
+ revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
207
+ metrics:
208
+ - type: v_measure
209
+ value: 20.923883720813706
210
+ - task:
211
+ type: Clustering
212
+ dataset:
213
+ name: MTEB BiorxivClusteringP2P
214
+ type: mteb/biorxiv-clustering-p2p
215
+ config: default
216
+ split: test
217
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
218
+ metrics:
219
+ - type: v_measure
220
+ value: 36.16058801465044
221
+ - task:
222
+ type: Clustering
223
+ dataset:
224
+ name: MTEB BiorxivClusteringS2S
225
+ type: mteb/biorxiv-clustering-s2s
226
+ config: default
227
+ split: test
228
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
229
+ metrics:
230
+ - type: v_measure
231
+ value: 30.1402356118627
232
+ - task:
233
+ type: Retrieval
234
+ dataset:
235
+ name: MTEB CQADupstackAndroidRetrieval
236
+ type: mteb/cqadupstack-android
237
+ config: default
238
+ split: test
239
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
240
+ metrics:
241
+ - type: map_at_1
242
+ value: 35.612
243
+ - type: map_at_10
244
+ value: 47.117
245
+ - type: map_at_100
246
+ value: 48.711
247
+ - type: map_at_1000
248
+ value: 48.826
249
+ - type: map_at_3
250
+ value: 43.858999999999995
251
+ - type: map_at_5
252
+ value: 45.612
253
+ - type: mrr_at_1
254
+ value: 42.918
255
+ - type: mrr_at_10
256
+ value: 52.806
257
+ - type: mrr_at_100
258
+ value: 53.564
259
+ - type: mrr_at_1000
260
+ value: 53.596999999999994
261
+ - type: mrr_at_3
262
+ value: 50.453
263
+ - type: mrr_at_5
264
+ value: 51.841
265
+ - type: ndcg_at_1
266
+ value: 42.918
267
+ - type: ndcg_at_10
268
+ value: 53.291999999999994
269
+ - type: ndcg_at_100
270
+ value: 58.711999999999996
271
+ - type: ndcg_at_1000
272
+ value: 60.317
273
+ - type: ndcg_at_3
274
+ value: 48.855
275
+ - type: ndcg_at_5
276
+ value: 50.778
277
+ - type: precision_at_1
278
+ value: 42.918
279
+ - type: precision_at_10
280
+ value: 9.927999999999999
281
+ - type: precision_at_100
282
+ value: 1.592
283
+ - type: precision_at_1000
284
+ value: 0.201
285
+ - type: precision_at_3
286
+ value: 23.366999999999997
287
+ - type: precision_at_5
288
+ value: 16.366
289
+ - type: recall_at_1
290
+ value: 35.612
291
+ - type: recall_at_10
292
+ value: 64.671
293
+ - type: recall_at_100
294
+ value: 86.97
295
+ - type: recall_at_1000
296
+ value: 96.99600000000001
297
+ - type: recall_at_3
298
+ value: 51.37199999999999
299
+ - type: recall_at_5
300
+ value: 57.094
301
+ - task:
302
+ type: Retrieval
303
+ dataset:
304
+ name: MTEB CQADupstackEnglishRetrieval
305
+ type: mteb/cqadupstack-english
306
+ config: default
307
+ split: test
308
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
309
+ metrics:
310
+ - type: map_at_1
311
+ value: 33.742
312
+ - type: map_at_10
313
+ value: 44.49
314
+ - type: map_at_100
315
+ value: 45.781
316
+ - type: map_at_1000
317
+ value: 45.902
318
+ - type: map_at_3
319
+ value: 41.453
320
+ - type: map_at_5
321
+ value: 43.251
322
+ - type: mrr_at_1
323
+ value: 42.357
324
+ - type: mrr_at_10
325
+ value: 50.463
326
+ - type: mrr_at_100
327
+ value: 51.17
328
+ - type: mrr_at_1000
329
+ value: 51.205999999999996
330
+ - type: mrr_at_3
331
+ value: 48.397
332
+ - type: mrr_at_5
333
+ value: 49.649
334
+ - type: ndcg_at_1
335
+ value: 42.357
336
+ - type: ndcg_at_10
337
+ value: 50.175000000000004
338
+ - type: ndcg_at_100
339
+ value: 54.491
340
+ - type: ndcg_at_1000
341
+ value: 56.282
342
+ - type: ndcg_at_3
343
+ value: 46.159
344
+ - type: ndcg_at_5
345
+ value: 48.226
346
+ - type: precision_at_1
347
+ value: 42.357
348
+ - type: precision_at_10
349
+ value: 9.382
350
+ - type: precision_at_100
351
+ value: 1.473
352
+ - type: precision_at_1000
353
+ value: 0.191
354
+ - type: precision_at_3
355
+ value: 22.187
356
+ - type: precision_at_5
357
+ value: 15.758
358
+ - type: recall_at_1
359
+ value: 33.742
360
+ - type: recall_at_10
361
+ value: 59.760999999999996
362
+ - type: recall_at_100
363
+ value: 77.89500000000001
364
+ - type: recall_at_1000
365
+ value: 89.005
366
+ - type: recall_at_3
367
+ value: 47.872
368
+ - type: recall_at_5
369
+ value: 53.559
370
+ - task:
371
+ type: Retrieval
372
+ dataset:
373
+ name: MTEB CQADupstackGamingRetrieval
374
+ type: mteb/cqadupstack-gaming
375
+ config: default
376
+ split: test
377
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
378
+ metrics:
379
+ - type: map_at_1
380
+ value: 43.883
381
+ - type: map_at_10
382
+ value: 56.464999999999996
383
+ - type: map_at_100
384
+ value: 57.394
385
+ - type: map_at_1000
386
+ value: 57.443999999999996
387
+ - type: map_at_3
388
+ value: 53.169
389
+ - type: map_at_5
390
+ value: 54.984
391
+ - type: mrr_at_1
392
+ value: 50.470000000000006
393
+ - type: mrr_at_10
394
+ value: 59.997
395
+ - type: mrr_at_100
396
+ value: 60.586
397
+ - type: mrr_at_1000
398
+ value: 60.61
399
+ - type: mrr_at_3
400
+ value: 57.837
401
+ - type: mrr_at_5
402
+ value: 59.019
403
+ - type: ndcg_at_1
404
+ value: 50.470000000000006
405
+ - type: ndcg_at_10
406
+ value: 62.134
407
+ - type: ndcg_at_100
408
+ value: 65.69500000000001
409
+ - type: ndcg_at_1000
410
+ value: 66.674
411
+ - type: ndcg_at_3
412
+ value: 56.916999999999994
413
+ - type: ndcg_at_5
414
+ value: 59.312
415
+ - type: precision_at_1
416
+ value: 50.470000000000006
417
+ - type: precision_at_10
418
+ value: 9.812
419
+ - type: precision_at_100
420
+ value: 1.25
421
+ - type: precision_at_1000
422
+ value: 0.13699999999999998
423
+ - type: precision_at_3
424
+ value: 25.119999999999997
425
+ - type: precision_at_5
426
+ value: 17.016000000000002
427
+ - type: recall_at_1
428
+ value: 43.883
429
+ - type: recall_at_10
430
+ value: 75.417
431
+ - type: recall_at_100
432
+ value: 90.545
433
+ - type: recall_at_1000
434
+ value: 97.44500000000001
435
+ - type: recall_at_3
436
+ value: 61.306000000000004
437
+ - type: recall_at_5
438
+ value: 67.244
439
+ - task:
440
+ type: Retrieval
441
+ dataset:
442
+ name: MTEB CQADupstackGisRetrieval
443
+ type: mteb/cqadupstack-gis
444
+ config: default
445
+ split: test
446
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
447
+ metrics:
448
+ - type: map_at_1
449
+ value: 29.813000000000002
450
+ - type: map_at_10
451
+ value: 38.627
452
+ - type: map_at_100
453
+ value: 39.735
454
+ - type: map_at_1000
455
+ value: 39.806000000000004
456
+ - type: map_at_3
457
+ value: 36.283
458
+ - type: map_at_5
459
+ value: 37.491
460
+ - type: mrr_at_1
461
+ value: 32.316
462
+ - type: mrr_at_10
463
+ value: 40.752
464
+ - type: mrr_at_100
465
+ value: 41.699000000000005
466
+ - type: mrr_at_1000
467
+ value: 41.749
468
+ - type: mrr_at_3
469
+ value: 38.531
470
+ - type: mrr_at_5
471
+ value: 39.706
472
+ - type: ndcg_at_1
473
+ value: 32.316
474
+ - type: ndcg_at_10
475
+ value: 43.524
476
+ - type: ndcg_at_100
477
+ value: 48.648
478
+ - type: ndcg_at_1000
479
+ value: 50.405
480
+ - type: ndcg_at_3
481
+ value: 38.928000000000004
482
+ - type: ndcg_at_5
483
+ value: 40.967
484
+ - type: precision_at_1
485
+ value: 32.316
486
+ - type: precision_at_10
487
+ value: 6.451999999999999
488
+ - type: precision_at_100
489
+ value: 0.9490000000000001
490
+ - type: precision_at_1000
491
+ value: 0.11299999999999999
492
+ - type: precision_at_3
493
+ value: 16.384
494
+ - type: precision_at_5
495
+ value: 11.006
496
+ - type: recall_at_1
497
+ value: 29.813000000000002
498
+ - type: recall_at_10
499
+ value: 56.562999999999995
500
+ - type: recall_at_100
501
+ value: 79.452
502
+ - type: recall_at_1000
503
+ value: 92.715
504
+ - type: recall_at_3
505
+ value: 43.985
506
+ - type: recall_at_5
507
+ value: 49.001
508
+ - task:
509
+ type: Retrieval
510
+ dataset:
511
+ name: MTEB CQADupstackMathematicaRetrieval
512
+ type: mteb/cqadupstack-mathematica
513
+ config: default
514
+ split: test
515
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
516
+ metrics:
517
+ - type: map_at_1
518
+ value: 19.961000000000002
519
+ - type: map_at_10
520
+ value: 28.026
521
+ - type: map_at_100
522
+ value: 29.212
523
+ - type: map_at_1000
524
+ value: 29.332
525
+ - type: map_at_3
526
+ value: 25.296999999999997
527
+ - type: map_at_5
528
+ value: 26.832
529
+ - type: mrr_at_1
530
+ value: 24.627
531
+ - type: mrr_at_10
532
+ value: 33.045
533
+ - type: mrr_at_100
534
+ value: 33.944
535
+ - type: mrr_at_1000
536
+ value: 34.013
537
+ - type: mrr_at_3
538
+ value: 30.307000000000002
539
+ - type: mrr_at_5
540
+ value: 31.874000000000002
541
+ - type: ndcg_at_1
542
+ value: 24.627
543
+ - type: ndcg_at_10
544
+ value: 33.414
545
+ - type: ndcg_at_100
546
+ value: 39.061
547
+ - type: ndcg_at_1000
548
+ value: 41.795
549
+ - type: ndcg_at_3
550
+ value: 28.377000000000002
551
+ - type: ndcg_at_5
552
+ value: 30.781999999999996
553
+ - type: precision_at_1
554
+ value: 24.627
555
+ - type: precision_at_10
556
+ value: 6.02
557
+ - type: precision_at_100
558
+ value: 1.035
559
+ - type: precision_at_1000
560
+ value: 0.13899999999999998
561
+ - type: precision_at_3
562
+ value: 13.516
563
+ - type: precision_at_5
564
+ value: 9.851
565
+ - type: recall_at_1
566
+ value: 19.961000000000002
567
+ - type: recall_at_10
568
+ value: 45.174
569
+ - type: recall_at_100
570
+ value: 69.69
571
+ - type: recall_at_1000
572
+ value: 89.24600000000001
573
+ - type: recall_at_3
574
+ value: 31.062
575
+ - type: recall_at_5
576
+ value: 37.193
577
+ - task:
578
+ type: Retrieval
579
+ dataset:
580
+ name: MTEB CQADupstackPhysicsRetrieval
581
+ type: mteb/cqadupstack-physics
582
+ config: default
583
+ split: test
584
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
585
+ metrics:
586
+ - type: map_at_1
587
+ value: 32.080999999999996
588
+ - type: map_at_10
589
+ value: 42.177
590
+ - type: map_at_100
591
+ value: 43.431999999999995
592
+ - type: map_at_1000
593
+ value: 43.533
594
+ - type: map_at_3
595
+ value: 38.721
596
+ - type: map_at_5
597
+ value: 40.669
598
+ - type: mrr_at_1
599
+ value: 38.787
600
+ - type: mrr_at_10
601
+ value: 47.762
602
+ - type: mrr_at_100
603
+ value: 48.541000000000004
604
+ - type: mrr_at_1000
605
+ value: 48.581
606
+ - type: mrr_at_3
607
+ value: 45.123999999999995
608
+ - type: mrr_at_5
609
+ value: 46.639
610
+ - type: ndcg_at_1
611
+ value: 38.787
612
+ - type: ndcg_at_10
613
+ value: 48.094
614
+ - type: ndcg_at_100
615
+ value: 53.291
616
+ - type: ndcg_at_1000
617
+ value: 55.21
618
+ - type: ndcg_at_3
619
+ value: 42.721
620
+ - type: ndcg_at_5
621
+ value: 45.301
622
+ - type: precision_at_1
623
+ value: 38.787
624
+ - type: precision_at_10
625
+ value: 8.576
626
+ - type: precision_at_100
627
+ value: 1.306
628
+ - type: precision_at_1000
629
+ value: 0.164
630
+ - type: precision_at_3
631
+ value: 19.698
632
+ - type: precision_at_5
633
+ value: 14.013
634
+ - type: recall_at_1
635
+ value: 32.080999999999996
636
+ - type: recall_at_10
637
+ value: 59.948
638
+ - type: recall_at_100
639
+ value: 81.811
640
+ - type: recall_at_1000
641
+ value: 94.544
642
+ - type: recall_at_3
643
+ value: 44.903999999999996
644
+ - type: recall_at_5
645
+ value: 51.763999999999996
646
+ - task:
647
+ type: Retrieval
648
+ dataset:
649
+ name: MTEB CQADupstackProgrammersRetrieval
650
+ type: mteb/cqadupstack-programmers
651
+ config: default
652
+ split: test
653
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
654
+ metrics:
655
+ - type: map_at_1
656
+ value: 28.869
657
+ - type: map_at_10
658
+ value: 38.954
659
+ - type: map_at_100
660
+ value: 40.233000000000004
661
+ - type: map_at_1000
662
+ value: 40.332
663
+ - type: map_at_3
664
+ value: 35.585
665
+ - type: map_at_5
666
+ value: 37.476
667
+ - type: mrr_at_1
668
+ value: 35.959
669
+ - type: mrr_at_10
670
+ value: 44.800000000000004
671
+ - type: mrr_at_100
672
+ value: 45.609
673
+ - type: mrr_at_1000
674
+ value: 45.655
675
+ - type: mrr_at_3
676
+ value: 42.333
677
+ - type: mrr_at_5
678
+ value: 43.68
679
+ - type: ndcg_at_1
680
+ value: 35.959
681
+ - type: ndcg_at_10
682
+ value: 44.957
683
+ - type: ndcg_at_100
684
+ value: 50.275000000000006
685
+ - type: ndcg_at_1000
686
+ value: 52.29899999999999
687
+ - type: ndcg_at_3
688
+ value: 39.797
689
+ - type: ndcg_at_5
690
+ value: 42.128
691
+ - type: precision_at_1
692
+ value: 35.959
693
+ - type: precision_at_10
694
+ value: 8.185
695
+ - type: precision_at_100
696
+ value: 1.261
697
+ - type: precision_at_1000
698
+ value: 0.159
699
+ - type: precision_at_3
700
+ value: 18.988
701
+ - type: precision_at_5
702
+ value: 13.516
703
+ - type: recall_at_1
704
+ value: 28.869
705
+ - type: recall_at_10
706
+ value: 57.154
707
+ - type: recall_at_100
708
+ value: 79.764
709
+ - type: recall_at_1000
710
+ value: 93.515
711
+ - type: recall_at_3
712
+ value: 42.364000000000004
713
+ - type: recall_at_5
714
+ value: 48.756
715
+ - task:
716
+ type: Retrieval
717
+ dataset:
718
+ name: MTEB CQADupstackRetrieval
719
+ type: mteb/cqadupstack
720
+ config: default
721
+ split: test
722
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
723
+ metrics:
724
+ - type: map_at_1
725
+ value: 29.31008333333333
726
+ - type: map_at_10
727
+ value: 38.81849999999999
728
+ - type: map_at_100
729
+ value: 40.05058333333334
730
+ - type: map_at_1000
731
+ value: 40.16116666666667
732
+ - type: map_at_3
733
+ value: 35.91441666666667
734
+ - type: map_at_5
735
+ value: 37.526583333333335
736
+ - type: mrr_at_1
737
+ value: 34.60066666666667
738
+ - type: mrr_at_10
739
+ value: 43.08858333333333
740
+ - type: mrr_at_100
741
+ value: 43.927749999999996
742
+ - type: mrr_at_1000
743
+ value: 43.97866666666667
744
+ - type: mrr_at_3
745
+ value: 40.72775
746
+ - type: mrr_at_5
747
+ value: 42.067249999999994
748
+ - type: ndcg_at_1
749
+ value: 34.60066666666667
750
+ - type: ndcg_at_10
751
+ value: 44.20841666666667
752
+ - type: ndcg_at_100
753
+ value: 49.32866666666667
754
+ - type: ndcg_at_1000
755
+ value: 51.373999999999995
756
+ - type: ndcg_at_3
757
+ value: 39.452083333333334
758
+ - type: ndcg_at_5
759
+ value: 41.67
760
+ - type: precision_at_1
761
+ value: 34.60066666666667
762
+ - type: precision_at_10
763
+ value: 7.616583333333334
764
+ - type: precision_at_100
765
+ value: 1.20175
766
+ - type: precision_at_1000
767
+ value: 0.156
768
+ - type: precision_at_3
769
+ value: 17.992
770
+ - type: precision_at_5
771
+ value: 12.658416666666666
772
+ - type: recall_at_1
773
+ value: 29.31008333333333
774
+ - type: recall_at_10
775
+ value: 55.81900000000001
776
+ - type: recall_at_100
777
+ value: 78.06308333333334
778
+ - type: recall_at_1000
779
+ value: 92.10641666666668
780
+ - type: recall_at_3
781
+ value: 42.50166666666667
782
+ - type: recall_at_5
783
+ value: 48.26108333333333
784
+ - task:
785
+ type: Retrieval
786
+ dataset:
787
+ name: MTEB CQADupstackStatsRetrieval
788
+ type: mteb/cqadupstack-stats
789
+ config: default
790
+ split: test
791
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
792
+ metrics:
793
+ - type: map_at_1
794
+ value: 26.773000000000003
795
+ - type: map_at_10
796
+ value: 34.13
797
+ - type: map_at_100
798
+ value: 35.113
799
+ - type: map_at_1000
800
+ value: 35.211
801
+ - type: map_at_3
802
+ value: 31.958
803
+ - type: map_at_5
804
+ value: 33.080999999999996
805
+ - type: mrr_at_1
806
+ value: 30.061
807
+ - type: mrr_at_10
808
+ value: 37.061
809
+ - type: mrr_at_100
810
+ value: 37.865
811
+ - type: mrr_at_1000
812
+ value: 37.939
813
+ - type: mrr_at_3
814
+ value: 34.995
815
+ - type: mrr_at_5
816
+ value: 36.092
817
+ - type: ndcg_at_1
818
+ value: 30.061
819
+ - type: ndcg_at_10
820
+ value: 38.391999999999996
821
+ - type: ndcg_at_100
822
+ value: 43.13
823
+ - type: ndcg_at_1000
824
+ value: 45.449
825
+ - type: ndcg_at_3
826
+ value: 34.411
827
+ - type: ndcg_at_5
828
+ value: 36.163000000000004
829
+ - type: precision_at_1
830
+ value: 30.061
831
+ - type: precision_at_10
832
+ value: 5.982
833
+ - type: precision_at_100
834
+ value: 0.911
835
+ - type: precision_at_1000
836
+ value: 0.11800000000000001
837
+ - type: precision_at_3
838
+ value: 14.673
839
+ - type: precision_at_5
840
+ value: 10.030999999999999
841
+ - type: recall_at_1
842
+ value: 26.773000000000003
843
+ - type: recall_at_10
844
+ value: 48.445
845
+ - type: recall_at_100
846
+ value: 69.741
847
+ - type: recall_at_1000
848
+ value: 86.59
849
+ - type: recall_at_3
850
+ value: 37.576
851
+ - type: recall_at_5
852
+ value: 41.948
853
+ - task:
854
+ type: Retrieval
855
+ dataset:
856
+ name: MTEB CQADupstackTexRetrieval
857
+ type: mteb/cqadupstack-tex
858
+ config: default
859
+ split: test
860
+ revision: 46989137a86843e03a6195de44b09deda022eec7
861
+ metrics:
862
+ - type: map_at_1
863
+ value: 18.556
864
+ - type: map_at_10
865
+ value: 26.340999999999998
866
+ - type: map_at_100
867
+ value: 27.560000000000002
868
+ - type: map_at_1000
869
+ value: 27.685
870
+ - type: map_at_3
871
+ value: 24.136
872
+ - type: map_at_5
873
+ value: 25.34
874
+ - type: mrr_at_1
875
+ value: 22.368
876
+ - type: mrr_at_10
877
+ value: 30.192999999999998
878
+ - type: mrr_at_100
879
+ value: 31.183
880
+ - type: mrr_at_1000
881
+ value: 31.258000000000003
882
+ - type: mrr_at_3
883
+ value: 28.223
884
+ - type: mrr_at_5
885
+ value: 29.294999999999998
886
+ - type: ndcg_at_1
887
+ value: 22.368
888
+ - type: ndcg_at_10
889
+ value: 31.029
890
+ - type: ndcg_at_100
891
+ value: 36.768
892
+ - type: ndcg_at_1000
893
+ value: 39.572
894
+ - type: ndcg_at_3
895
+ value: 27.197
896
+ - type: ndcg_at_5
897
+ value: 28.912
898
+ - type: precision_at_1
899
+ value: 22.368
900
+ - type: precision_at_10
901
+ value: 5.606
902
+ - type: precision_at_100
903
+ value: 0.9979999999999999
904
+ - type: precision_at_1000
905
+ value: 0.14100000000000001
906
+ - type: precision_at_3
907
+ value: 12.892999999999999
908
+ - type: precision_at_5
909
+ value: 9.16
910
+ - type: recall_at_1
911
+ value: 18.556
912
+ - type: recall_at_10
913
+ value: 41.087
914
+ - type: recall_at_100
915
+ value: 66.92
916
+ - type: recall_at_1000
917
+ value: 86.691
918
+ - type: recall_at_3
919
+ value: 30.415
920
+ - type: recall_at_5
921
+ value: 34.813
922
+ - task:
923
+ type: Retrieval
924
+ dataset:
925
+ name: MTEB CQADupstackUnixRetrieval
926
+ type: mteb/cqadupstack-unix
927
+ config: default
928
+ split: test
929
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
930
+ metrics:
931
+ - type: map_at_1
932
+ value: 29.953999999999997
933
+ - type: map_at_10
934
+ value: 39.633
935
+ - type: map_at_100
936
+ value: 40.923
937
+ - type: map_at_1000
938
+ value: 41.016000000000005
939
+ - type: map_at_3
940
+ value: 36.609
941
+ - type: map_at_5
942
+ value: 38.443
943
+ - type: mrr_at_1
944
+ value: 35.354
945
+ - type: mrr_at_10
946
+ value: 43.718
947
+ - type: mrr_at_100
948
+ value: 44.651999999999994
949
+ - type: mrr_at_1000
950
+ value: 44.696000000000005
951
+ - type: mrr_at_3
952
+ value: 41.154
953
+ - type: mrr_at_5
954
+ value: 42.730000000000004
955
+ - type: ndcg_at_1
956
+ value: 35.354
957
+ - type: ndcg_at_10
958
+ value: 44.933
959
+ - type: ndcg_at_100
960
+ value: 50.577000000000005
961
+ - type: ndcg_at_1000
962
+ value: 52.428
963
+ - type: ndcg_at_3
964
+ value: 39.833
965
+ - type: ndcg_at_5
966
+ value: 42.465
967
+ - type: precision_at_1
968
+ value: 35.354
969
+ - type: precision_at_10
970
+ value: 7.416
971
+ - type: precision_at_100
972
+ value: 1.157
973
+ - type: precision_at_1000
974
+ value: 0.14100000000000001
975
+ - type: precision_at_3
976
+ value: 17.817
977
+ - type: precision_at_5
978
+ value: 12.687000000000001
979
+ - type: recall_at_1
980
+ value: 29.953999999999997
981
+ - type: recall_at_10
982
+ value: 56.932
983
+ - type: recall_at_100
984
+ value: 80.93900000000001
985
+ - type: recall_at_1000
986
+ value: 93.582
987
+ - type: recall_at_3
988
+ value: 43.192
989
+ - type: recall_at_5
990
+ value: 49.757
991
+ - task:
992
+ type: Retrieval
993
+ dataset:
994
+ name: MTEB CQADupstackWebmastersRetrieval
995
+ type: mteb/cqadupstack-webmasters
996
+ config: default
997
+ split: test
998
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
999
+ metrics:
1000
+ - type: map_at_1
1001
+ value: 27.85
1002
+ - type: map_at_10
1003
+ value: 37.68
1004
+ - type: map_at_100
1005
+ value: 39.295
1006
+ - type: map_at_1000
1007
+ value: 39.527
1008
+ - type: map_at_3
1009
+ value: 35.036
1010
+ - type: map_at_5
1011
+ value: 36.269
1012
+ - type: mrr_at_1
1013
+ value: 33.004
1014
+ - type: mrr_at_10
1015
+ value: 42.096000000000004
1016
+ - type: mrr_at_100
1017
+ value: 43.019
1018
+ - type: mrr_at_1000
1019
+ value: 43.071
1020
+ - type: mrr_at_3
1021
+ value: 39.987
1022
+ - type: mrr_at_5
1023
+ value: 40.995
1024
+ - type: ndcg_at_1
1025
+ value: 33.004
1026
+ - type: ndcg_at_10
1027
+ value: 43.461
1028
+ - type: ndcg_at_100
1029
+ value: 49.138
1030
+ - type: ndcg_at_1000
1031
+ value: 51.50900000000001
1032
+ - type: ndcg_at_3
1033
+ value: 39.317
1034
+ - type: ndcg_at_5
1035
+ value: 40.760999999999996
1036
+ - type: precision_at_1
1037
+ value: 33.004
1038
+ - type: precision_at_10
1039
+ value: 8.161999999999999
1040
+ - type: precision_at_100
1041
+ value: 1.583
1042
+ - type: precision_at_1000
1043
+ value: 0.245
1044
+ - type: precision_at_3
1045
+ value: 18.445
1046
+ - type: precision_at_5
1047
+ value: 12.885
1048
+ - type: recall_at_1
1049
+ value: 27.85
1050
+ - type: recall_at_10
1051
+ value: 54.419
1052
+ - type: recall_at_100
1053
+ value: 79.742
1054
+ - type: recall_at_1000
1055
+ value: 93.97
1056
+ - type: recall_at_3
1057
+ value: 42.149
1058
+ - type: recall_at_5
1059
+ value: 46.165
1060
+ - task:
1061
+ type: Retrieval
1062
+ dataset:
1063
+ name: MTEB CQADupstackWordpressRetrieval
1064
+ type: mteb/cqadupstack-wordpress
1065
+ config: default
1066
+ split: test
1067
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1068
+ metrics:
1069
+ - type: map_at_1
1070
+ value: 24.627
1071
+ - type: map_at_10
1072
+ value: 32.182
1073
+ - type: map_at_100
1074
+ value: 33.217999999999996
1075
+ - type: map_at_1000
1076
+ value: 33.32
1077
+ - type: map_at_3
1078
+ value: 28.866999999999997
1079
+ - type: map_at_5
1080
+ value: 30.871
1081
+ - type: mrr_at_1
1082
+ value: 26.987
1083
+ - type: mrr_at_10
1084
+ value: 34.37
1085
+ - type: mrr_at_100
1086
+ value: 35.301
1087
+ - type: mrr_at_1000
1088
+ value: 35.369
1089
+ - type: mrr_at_3
1090
+ value: 31.391999999999996
1091
+ - type: mrr_at_5
1092
+ value: 33.287
1093
+ - type: ndcg_at_1
1094
+ value: 26.987
1095
+ - type: ndcg_at_10
1096
+ value: 37.096000000000004
1097
+ - type: ndcg_at_100
1098
+ value: 42.158
1099
+ - type: ndcg_at_1000
1100
+ value: 44.548
1101
+ - type: ndcg_at_3
1102
+ value: 30.913
1103
+ - type: ndcg_at_5
1104
+ value: 34.245
1105
+ - type: precision_at_1
1106
+ value: 26.987
1107
+ - type: precision_at_10
1108
+ value: 5.878
1109
+ - type: precision_at_100
1110
+ value: 0.906
1111
+ - type: precision_at_1000
1112
+ value: 0.123
1113
+ - type: precision_at_3
1114
+ value: 12.815999999999999
1115
+ - type: precision_at_5
1116
+ value: 9.612
1117
+ - type: recall_at_1
1118
+ value: 24.627
1119
+ - type: recall_at_10
1120
+ value: 50.257
1121
+ - type: recall_at_100
1122
+ value: 73.288
1123
+ - type: recall_at_1000
1124
+ value: 90.97800000000001
1125
+ - type: recall_at_3
1126
+ value: 33.823
1127
+ - type: recall_at_5
1128
+ value: 41.839
1129
+ - task:
1130
+ type: Retrieval
1131
+ dataset:
1132
+ name: MTEB ClimateFEVER
1133
+ type: mteb/climate-fever
1134
+ config: default
1135
+ split: test
1136
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1137
+ metrics:
1138
+ - type: map_at_1
1139
+ value: 17.343
1140
+ - type: map_at_10
1141
+ value: 28.59
1142
+ - type: map_at_100
1143
+ value: 30.591
1144
+ - type: map_at_1000
1145
+ value: 30.759999999999998
1146
+ - type: map_at_3
1147
+ value: 24.197
1148
+ - type: map_at_5
1149
+ value: 26.433
1150
+ - type: mrr_at_1
1151
+ value: 39.609
1152
+ - type: mrr_at_10
1153
+ value: 51.107
1154
+ - type: mrr_at_100
1155
+ value: 51.87199999999999
1156
+ - type: mrr_at_1000
1157
+ value: 51.894
1158
+ - type: mrr_at_3
1159
+ value: 48.154
1160
+ - type: mrr_at_5
1161
+ value: 49.939
1162
+ - type: ndcg_at_1
1163
+ value: 39.609
1164
+ - type: ndcg_at_10
1165
+ value: 38.329
1166
+ - type: ndcg_at_100
1167
+ value: 45.573
1168
+ - type: ndcg_at_1000
1169
+ value: 48.405
1170
+ - type: ndcg_at_3
1171
+ value: 32.506
1172
+ - type: ndcg_at_5
1173
+ value: 34.331
1174
+ - type: precision_at_1
1175
+ value: 39.609
1176
+ - type: precision_at_10
1177
+ value: 11.668000000000001
1178
+ - type: precision_at_100
1179
+ value: 1.9539999999999997
1180
+ - type: precision_at_1000
1181
+ value: 0.249
1182
+ - type: precision_at_3
1183
+ value: 23.952
1184
+ - type: precision_at_5
1185
+ value: 17.902
1186
+ - type: recall_at_1
1187
+ value: 17.343
1188
+ - type: recall_at_10
1189
+ value: 43.704
1190
+ - type: recall_at_100
1191
+ value: 68.363
1192
+ - type: recall_at_1000
1193
+ value: 84.04599999999999
1194
+ - type: recall_at_3
1195
+ value: 29.028
1196
+ - type: recall_at_5
1197
+ value: 35.022
1198
+ - task:
1199
+ type: Retrieval
1200
+ dataset:
1201
+ name: MTEB DBPedia
1202
+ type: mteb/dbpedia
1203
+ config: default
1204
+ split: test
1205
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1206
+ metrics:
1207
+ - type: map_at_1
1208
+ value: 9.934999999999999
1209
+ - type: map_at_10
1210
+ value: 22.081
1211
+ - type: map_at_100
1212
+ value: 32.036
1213
+ - type: map_at_1000
1214
+ value: 33.803
1215
+ - type: map_at_3
1216
+ value: 15.687999999999999
1217
+ - type: map_at_5
1218
+ value: 18.357
1219
+ - type: mrr_at_1
1220
+ value: 70.75
1221
+ - type: mrr_at_10
1222
+ value: 78.506
1223
+ - type: mrr_at_100
1224
+ value: 78.874
1225
+ - type: mrr_at_1000
1226
+ value: 78.88300000000001
1227
+ - type: mrr_at_3
1228
+ value: 77.667
1229
+ - type: mrr_at_5
1230
+ value: 78.342
1231
+ - type: ndcg_at_1
1232
+ value: 57.25
1233
+ - type: ndcg_at_10
1234
+ value: 45.286
1235
+ - type: ndcg_at_100
1236
+ value: 50.791
1237
+ - type: ndcg_at_1000
1238
+ value: 58.021
1239
+ - type: ndcg_at_3
1240
+ value: 49.504
1241
+ - type: ndcg_at_5
1242
+ value: 47.03
1243
+ - type: precision_at_1
1244
+ value: 70.75
1245
+ - type: precision_at_10
1246
+ value: 36.425000000000004
1247
+ - type: precision_at_100
1248
+ value: 11.953
1249
+ - type: precision_at_1000
1250
+ value: 2.248
1251
+ - type: precision_at_3
1252
+ value: 53.25
1253
+ - type: precision_at_5
1254
+ value: 46.150000000000006
1255
+ - type: recall_at_1
1256
+ value: 9.934999999999999
1257
+ - type: recall_at_10
1258
+ value: 27.592
1259
+ - type: recall_at_100
1260
+ value: 58.089
1261
+ - type: recall_at_1000
1262
+ value: 81.025
1263
+ - type: recall_at_3
1264
+ value: 17.048
1265
+ - type: recall_at_5
1266
+ value: 20.834
1267
+ - task:
1268
+ type: Classification
1269
+ dataset:
1270
+ name: MTEB EmotionClassification
1271
+ type: mteb/emotion
1272
+ config: default
1273
+ split: test
1274
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1275
+ metrics:
1276
+ - type: accuracy
1277
+ value: 47.25999999999999
1278
+ - type: f1
1279
+ value: 43.83371155132253
1280
+ - task:
1281
+ type: Retrieval
1282
+ dataset:
1283
+ name: MTEB FEVER
1284
+ type: mteb/fever
1285
+ config: default
1286
+ split: test
1287
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1288
+ metrics:
1289
+ - type: map_at_1
1290
+ value: 73.68900000000001
1291
+ - type: map_at_10
1292
+ value: 82.878
1293
+ - type: map_at_100
1294
+ value: 83.084
1295
+ - type: map_at_1000
1296
+ value: 83.097
1297
+ - type: map_at_3
1298
+ value: 81.528
1299
+ - type: map_at_5
1300
+ value: 82.432
1301
+ - type: mrr_at_1
1302
+ value: 79.49300000000001
1303
+ - type: mrr_at_10
1304
+ value: 87.24300000000001
1305
+ - type: mrr_at_100
1306
+ value: 87.3
1307
+ - type: mrr_at_1000
1308
+ value: 87.301
1309
+ - type: mrr_at_3
1310
+ value: 86.359
1311
+ - type: mrr_at_5
1312
+ value: 87.01
1313
+ - type: ndcg_at_1
1314
+ value: 79.49300000000001
1315
+ - type: ndcg_at_10
1316
+ value: 86.894
1317
+ - type: ndcg_at_100
1318
+ value: 87.6
1319
+ - type: ndcg_at_1000
1320
+ value: 87.79299999999999
1321
+ - type: ndcg_at_3
1322
+ value: 84.777
1323
+ - type: ndcg_at_5
1324
+ value: 86.08
1325
+ - type: precision_at_1
1326
+ value: 79.49300000000001
1327
+ - type: precision_at_10
1328
+ value: 10.578
1329
+ - type: precision_at_100
1330
+ value: 1.117
1331
+ - type: precision_at_1000
1332
+ value: 0.11499999999999999
1333
+ - type: precision_at_3
1334
+ value: 32.592999999999996
1335
+ - type: precision_at_5
1336
+ value: 20.423
1337
+ - type: recall_at_1
1338
+ value: 73.68900000000001
1339
+ - type: recall_at_10
1340
+ value: 94.833
1341
+ - type: recall_at_100
1342
+ value: 97.554
1343
+ - type: recall_at_1000
1344
+ value: 98.672
1345
+ - type: recall_at_3
1346
+ value: 89.236
1347
+ - type: recall_at_5
1348
+ value: 92.461
1349
+ - task:
1350
+ type: Retrieval
1351
+ dataset:
1352
+ name: MTEB FiQA2018
1353
+ type: mteb/fiqa
1354
+ config: default
1355
+ split: test
1356
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1357
+ metrics:
1358
+ - type: map_at_1
1359
+ value: 20.59
1360
+ - type: map_at_10
1361
+ value: 34.089000000000006
1362
+ - type: map_at_100
1363
+ value: 35.796
1364
+ - type: map_at_1000
1365
+ value: 35.988
1366
+ - type: map_at_3
1367
+ value: 29.877
1368
+ - type: map_at_5
1369
+ value: 32.202999999999996
1370
+ - type: mrr_at_1
1371
+ value: 41.049
1372
+ - type: mrr_at_10
1373
+ value: 50.370000000000005
1374
+ - type: mrr_at_100
1375
+ value: 51.209
1376
+ - type: mrr_at_1000
1377
+ value: 51.247
1378
+ - type: mrr_at_3
1379
+ value: 48.122
1380
+ - type: mrr_at_5
1381
+ value: 49.326
1382
+ - type: ndcg_at_1
1383
+ value: 41.049
1384
+ - type: ndcg_at_10
1385
+ value: 42.163000000000004
1386
+ - type: ndcg_at_100
1387
+ value: 48.638999999999996
1388
+ - type: ndcg_at_1000
1389
+ value: 51.775000000000006
1390
+ - type: ndcg_at_3
1391
+ value: 38.435
1392
+ - type: ndcg_at_5
1393
+ value: 39.561
1394
+ - type: precision_at_1
1395
+ value: 41.049
1396
+ - type: precision_at_10
1397
+ value: 11.481
1398
+ - type: precision_at_100
1399
+ value: 1.8239999999999998
1400
+ - type: precision_at_1000
1401
+ value: 0.24
1402
+ - type: precision_at_3
1403
+ value: 25.257
1404
+ - type: precision_at_5
1405
+ value: 18.519
1406
+ - type: recall_at_1
1407
+ value: 20.59
1408
+ - type: recall_at_10
1409
+ value: 49.547999999999995
1410
+ - type: recall_at_100
1411
+ value: 73.676
1412
+ - type: recall_at_1000
1413
+ value: 92.269
1414
+ - type: recall_at_3
1415
+ value: 35.656
1416
+ - type: recall_at_5
1417
+ value: 41.455
1418
+ - task:
1419
+ type: Retrieval
1420
+ dataset:
1421
+ name: MTEB HotpotQA
1422
+ type: mteb/hotpotqa
1423
+ config: default
1424
+ split: test
1425
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1426
+ metrics:
1427
+ - type: map_at_1
1428
+ value: 39.932
1429
+ - type: map_at_10
1430
+ value: 64.184
1431
+ - type: map_at_100
1432
+ value: 65.06
1433
+ - type: map_at_1000
1434
+ value: 65.109
1435
+ - type: map_at_3
1436
+ value: 60.27
1437
+ - type: map_at_5
1438
+ value: 62.732
1439
+ - type: mrr_at_1
1440
+ value: 79.865
1441
+ - type: mrr_at_10
1442
+ value: 85.99799999999999
1443
+ - type: mrr_at_100
1444
+ value: 86.13
1445
+ - type: mrr_at_1000
1446
+ value: 86.13300000000001
1447
+ - type: mrr_at_3
1448
+ value: 85.136
1449
+ - type: mrr_at_5
1450
+ value: 85.69200000000001
1451
+ - type: ndcg_at_1
1452
+ value: 79.865
1453
+ - type: ndcg_at_10
1454
+ value: 72.756
1455
+ - type: ndcg_at_100
1456
+ value: 75.638
1457
+ - type: ndcg_at_1000
1458
+ value: 76.589
1459
+ - type: ndcg_at_3
1460
+ value: 67.38199999999999
1461
+ - type: ndcg_at_5
1462
+ value: 70.402
1463
+ - type: precision_at_1
1464
+ value: 79.865
1465
+ - type: precision_at_10
1466
+ value: 15.387999999999998
1467
+ - type: precision_at_100
1468
+ value: 1.7610000000000001
1469
+ - type: precision_at_1000
1470
+ value: 0.189
1471
+ - type: precision_at_3
1472
+ value: 43.394
1473
+ - type: precision_at_5
1474
+ value: 28.424
1475
+ - type: recall_at_1
1476
+ value: 39.932
1477
+ - type: recall_at_10
1478
+ value: 76.941
1479
+ - type: recall_at_100
1480
+ value: 88.062
1481
+ - type: recall_at_1000
1482
+ value: 94.396
1483
+ - type: recall_at_3
1484
+ value: 65.091
1485
+ - type: recall_at_5
1486
+ value: 71.06
1487
+ - task:
1488
+ type: Classification
1489
+ dataset:
1490
+ name: MTEB ImdbClassification
1491
+ type: mteb/imdb
1492
+ config: default
1493
+ split: test
1494
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1495
+ metrics:
1496
+ - type: accuracy
1497
+ value: 71.7904
1498
+ - type: ap
1499
+ value: 65.82899456730257
1500
+ - type: f1
1501
+ value: 71.56611877410202
1502
+ - task:
1503
+ type: Retrieval
1504
+ dataset:
1505
+ name: MTEB MSMARCO
1506
+ type: mteb/msmarco
1507
+ config: default
1508
+ split: dev
1509
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1510
+ metrics:
1511
+ - type: map_at_1
1512
+ value: 21.931
1513
+ - type: map_at_10
1514
+ value: 34.849999999999994
1515
+ - type: map_at_100
1516
+ value: 36.033
1517
+ - type: map_at_1000
1518
+ value: 36.08
1519
+ - type: map_at_3
1520
+ value: 30.842000000000002
1521
+ - type: map_at_5
1522
+ value: 33.229
1523
+ - type: mrr_at_1
1524
+ value: 22.55
1525
+ - type: mrr_at_10
1526
+ value: 35.436
1527
+ - type: mrr_at_100
1528
+ value: 36.563
1529
+ - type: mrr_at_1000
1530
+ value: 36.604
1531
+ - type: mrr_at_3
1532
+ value: 31.507
1533
+ - type: mrr_at_5
1534
+ value: 33.851
1535
+ - type: ndcg_at_1
1536
+ value: 22.55
1537
+ - type: ndcg_at_10
1538
+ value: 41.969
1539
+ - type: ndcg_at_100
1540
+ value: 47.576
1541
+ - type: ndcg_at_1000
1542
+ value: 48.731
1543
+ - type: ndcg_at_3
1544
+ value: 33.894000000000005
1545
+ - type: ndcg_at_5
1546
+ value: 38.133
1547
+ - type: precision_at_1
1548
+ value: 22.55
1549
+ - type: precision_at_10
1550
+ value: 6.660000000000001
1551
+ - type: precision_at_100
1552
+ value: 0.946
1553
+ - type: precision_at_1000
1554
+ value: 0.104
1555
+ - type: precision_at_3
1556
+ value: 14.532
1557
+ - type: precision_at_5
1558
+ value: 10.865
1559
+ - type: recall_at_1
1560
+ value: 21.931
1561
+ - type: recall_at_10
1562
+ value: 63.841
1563
+ - type: recall_at_100
1564
+ value: 89.47699999999999
1565
+ - type: recall_at_1000
1566
+ value: 98.259
1567
+ - type: recall_at_3
1568
+ value: 42.063
1569
+ - type: recall_at_5
1570
+ value: 52.21
1571
+ - task:
1572
+ type: Classification
1573
+ dataset:
1574
+ name: MTEB MTOPDomainClassification (en)
1575
+ type: mteb/mtop_domain
1576
+ config: en
1577
+ split: test
1578
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1579
+ metrics:
1580
+ - type: accuracy
1581
+ value: 93.03921568627452
1582
+ - type: f1
1583
+ value: 92.56400672314416
1584
+ - task:
1585
+ type: Classification
1586
+ dataset:
1587
+ name: MTEB MTOPIntentClassification (en)
1588
+ type: mteb/mtop_intent
1589
+ config: en
1590
+ split: test
1591
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1592
+ metrics:
1593
+ - type: accuracy
1594
+ value: 63.515731874145
1595
+ - type: f1
1596
+ value: 44.922310875523216
1597
+ - task:
1598
+ type: Classification
1599
+ dataset:
1600
+ name: MTEB MasakhaNEWSClassification (eng)
1601
+ type: masakhane/masakhanews
1602
+ config: eng
1603
+ split: test
1604
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1605
+ metrics:
1606
+ - type: accuracy
1607
+ value: 77.57383966244727
1608
+ - type: f1
1609
+ value: 76.55222378218293
1610
+ - task:
1611
+ type: Clustering
1612
+ dataset:
1613
+ name: MTEB MasakhaNEWSClusteringP2P (eng)
1614
+ type: masakhane/masakhanews
1615
+ config: eng
1616
+ split: test
1617
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1618
+ metrics:
1619
+ - type: v_measure
1620
+ value: 62.74836240280833
1621
+ - type: v_measure
1622
+ value: 24.414348715238184
1623
+ - task:
1624
+ type: Classification
1625
+ dataset:
1626
+ name: MTEB MassiveIntentClassification (en)
1627
+ type: mteb/amazon_massive_intent
1628
+ config: en
1629
+ split: test
1630
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1631
+ metrics:
1632
+ - type: accuracy
1633
+ value: 66.54673839946201
1634
+ - type: f1
1635
+ value: 64.61004101532164
1636
+ - task:
1637
+ type: Classification
1638
+ dataset:
1639
+ name: MTEB MassiveScenarioClassification (en)
1640
+ type: mteb/amazon_massive_scenario
1641
+ config: en
1642
+ split: test
1643
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1644
+ metrics:
1645
+ - type: accuracy
1646
+ value: 73.11365164761264
1647
+ - type: f1
1648
+ value: 72.01684013680978
1649
+ - task:
1650
+ type: Clustering
1651
+ dataset:
1652
+ name: MTEB MedrxivClusteringP2P
1653
+ type: mteb/medrxiv-clustering-p2p
1654
+ config: default
1655
+ split: test
1656
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1657
+ metrics:
1658
+ - type: v_measure
1659
+ value: 31.123671999617297
1660
+ - task:
1661
+ type: Clustering
1662
+ dataset:
1663
+ name: MTEB MedrxivClusteringS2S
1664
+ type: mteb/medrxiv-clustering-s2s
1665
+ config: default
1666
+ split: test
1667
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1668
+ metrics:
1669
+ - type: v_measure
1670
+ value: 26.72684341430875
1671
+ - task:
1672
+ type: Reranking
1673
+ dataset:
1674
+ name: MTEB MindSmallReranking
1675
+ type: mteb/mind_small
1676
+ config: default
1677
+ split: test
1678
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1679
+ metrics:
1680
+ - type: map
1681
+ value: 29.910228061734816
1682
+ - type: mrr
1683
+ value: 30.835255982532477
1684
+ - task:
1685
+ type: Retrieval
1686
+ dataset:
1687
+ name: MTEB NFCorpus
1688
+ type: mteb/nfcorpus
1689
+ config: default
1690
+ split: test
1691
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1692
+ metrics:
1693
+ - type: map_at_1
1694
+ value: 5.6770000000000005
1695
+ - type: map_at_10
1696
+ value: 13.15
1697
+ - type: map_at_100
1698
+ value: 16.205
1699
+ - type: map_at_1000
1700
+ value: 17.580000000000002
1701
+ - type: map_at_3
1702
+ value: 9.651
1703
+ - type: map_at_5
1704
+ value: 11.142000000000001
1705
+ - type: mrr_at_1
1706
+ value: 47.678
1707
+ - type: mrr_at_10
1708
+ value: 56.257000000000005
1709
+ - type: mrr_at_100
1710
+ value: 56.708000000000006
1711
+ - type: mrr_at_1000
1712
+ value: 56.751
1713
+ - type: mrr_at_3
1714
+ value: 54.128
1715
+ - type: mrr_at_5
1716
+ value: 55.181000000000004
1717
+ - type: ndcg_at_1
1718
+ value: 45.511
1719
+ - type: ndcg_at_10
1720
+ value: 35.867
1721
+ - type: ndcg_at_100
1722
+ value: 31.566
1723
+ - type: ndcg_at_1000
1724
+ value: 40.077
1725
+ - type: ndcg_at_3
1726
+ value: 41.9
1727
+ - type: ndcg_at_5
1728
+ value: 39.367999999999995
1729
+ - type: precision_at_1
1730
+ value: 47.678
1731
+ - type: precision_at_10
1732
+ value: 26.842
1733
+ - type: precision_at_100
1734
+ value: 7.991
1735
+ - type: precision_at_1000
1736
+ value: 2.0469999999999997
1737
+ - type: precision_at_3
1738
+ value: 39.938
1739
+ - type: precision_at_5
1740
+ value: 34.613
1741
+ - type: recall_at_1
1742
+ value: 5.6770000000000005
1743
+ - type: recall_at_10
1744
+ value: 17.119999999999997
1745
+ - type: recall_at_100
1746
+ value: 30.828
1747
+ - type: recall_at_1000
1748
+ value: 62.082
1749
+ - type: recall_at_3
1750
+ value: 10.456
1751
+ - type: recall_at_5
1752
+ value: 12.903999999999998
1753
+ - task:
1754
+ type: Retrieval
1755
+ dataset:
1756
+ name: MTEB NQ
1757
+ type: mteb/nq
1758
+ config: default
1759
+ split: test
1760
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1761
+ metrics:
1762
+ - type: map_at_1
1763
+ value: 39.021
1764
+ - type: map_at_10
1765
+ value: 54.976
1766
+ - type: map_at_100
1767
+ value: 55.793000000000006
1768
+ - type: map_at_1000
1769
+ value: 55.811
1770
+ - type: map_at_3
1771
+ value: 50.759
1772
+ - type: map_at_5
1773
+ value: 53.429
1774
+ - type: mrr_at_1
1775
+ value: 43.308
1776
+ - type: mrr_at_10
1777
+ value: 57.118
1778
+ - type: mrr_at_100
1779
+ value: 57.69499999999999
1780
+ - type: mrr_at_1000
1781
+ value: 57.704
1782
+ - type: mrr_at_3
1783
+ value: 53.848
1784
+ - type: mrr_at_5
1785
+ value: 55.915000000000006
1786
+ - type: ndcg_at_1
1787
+ value: 43.308
1788
+ - type: ndcg_at_10
1789
+ value: 62.33800000000001
1790
+ - type: ndcg_at_100
1791
+ value: 65.61099999999999
1792
+ - type: ndcg_at_1000
1793
+ value: 65.995
1794
+ - type: ndcg_at_3
1795
+ value: 54.723
1796
+ - type: ndcg_at_5
1797
+ value: 59.026
1798
+ - type: precision_at_1
1799
+ value: 43.308
1800
+ - type: precision_at_10
1801
+ value: 9.803
1802
+ - type: precision_at_100
1803
+ value: 1.167
1804
+ - type: precision_at_1000
1805
+ value: 0.121
1806
+ - type: precision_at_3
1807
+ value: 24.334
1808
+ - type: precision_at_5
1809
+ value: 17.144000000000002
1810
+ - type: recall_at_1
1811
+ value: 39.021
1812
+ - type: recall_at_10
1813
+ value: 82.37299999999999
1814
+ - type: recall_at_100
1815
+ value: 96.21499999999999
1816
+ - type: recall_at_1000
1817
+ value: 99.02499999999999
1818
+ - type: recall_at_3
1819
+ value: 63.031000000000006
1820
+ - type: recall_at_5
1821
+ value: 72.856
1822
+ - task:
1823
+ type: Classification
1824
+ dataset:
1825
+ name: MTEB NewsClassification
1826
+ type: ag_news
1827
+ config: default
1828
+ split: test
1829
+ revision: eb185aade064a813bc0b7f42de02595523103ca4
1830
+ metrics:
1831
+ - type: accuracy
1832
+ value: 78.03289473684211
1833
+ - type: f1
1834
+ value: 77.89323745730803
1835
+ - task:
1836
+ type: PairClassification
1837
+ dataset:
1838
+ name: MTEB OpusparcusPC (en)
1839
+ type: GEM/opusparcus
1840
+ config: en
1841
+ split: test
1842
+ revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
1843
+ metrics:
1844
+ - type: cos_sim_accuracy
1845
+ value: 99.89816700610999
1846
+ - type: cos_sim_ap
1847
+ value: 100.0
1848
+ - type: cos_sim_f1
1849
+ value: 99.9490575649516
1850
+ - type: cos_sim_precision
1851
+ value: 100.0
1852
+ - type: cos_sim_recall
1853
+ value: 99.89816700610999
1854
+ - type: dot_accuracy
1855
+ value: 99.89816700610999
1856
+ - type: dot_ap
1857
+ value: 100.0
1858
+ - type: dot_f1
1859
+ value: 99.9490575649516
1860
+ - type: dot_precision
1861
+ value: 100.0
1862
+ - type: dot_recall
1863
+ value: 99.89816700610999
1864
+ - type: euclidean_accuracy
1865
+ value: 99.89816700610999
1866
+ - type: euclidean_ap
1867
+ value: 100.0
1868
+ - type: euclidean_f1
1869
+ value: 99.9490575649516
1870
+ - type: euclidean_precision
1871
+ value: 100.0
1872
+ - type: euclidean_recall
1873
+ value: 99.89816700610999
1874
+ - type: manhattan_accuracy
1875
+ value: 99.89816700610999
1876
+ - type: manhattan_ap
1877
+ value: 100.0
1878
+ - type: manhattan_f1
1879
+ value: 99.9490575649516
1880
+ - type: manhattan_precision
1881
+ value: 100.0
1882
+ - type: manhattan_recall
1883
+ value: 99.89816700610999
1884
+ - type: max_accuracy
1885
+ value: 99.89816700610999
1886
+ - type: max_ap
1887
+ value: 100.0
1888
+ - type: max_f1
1889
+ value: 99.9490575649516
1890
+ - task:
1891
+ type: PairClassification
1892
+ dataset:
1893
+ name: MTEB PawsX (en)
1894
+ type: paws-x
1895
+ config: en
1896
+ split: test
1897
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
1898
+ metrics:
1899
+ - type: cos_sim_accuracy
1900
+ value: 61.75000000000001
1901
+ - type: cos_sim_ap
1902
+ value: 59.578879568280385
1903
+ - type: cos_sim_f1
1904
+ value: 62.50861474844934
1905
+ - type: cos_sim_precision
1906
+ value: 45.46365914786967
1907
+ - type: cos_sim_recall
1908
+ value: 100.0
1909
+ - type: dot_accuracy
1910
+ value: 61.75000000000001
1911
+ - type: dot_ap
1912
+ value: 59.57893088951573
1913
+ - type: dot_f1
1914
+ value: 62.50861474844934
1915
+ - type: dot_precision
1916
+ value: 45.46365914786967
1917
+ - type: dot_recall
1918
+ value: 100.0
1919
+ - type: euclidean_accuracy
1920
+ value: 61.75000000000001
1921
+ - type: euclidean_ap
1922
+ value: 59.578755624671686
1923
+ - type: euclidean_f1
1924
+ value: 62.50861474844934
1925
+ - type: euclidean_precision
1926
+ value: 45.46365914786967
1927
+ - type: euclidean_recall
1928
+ value: 100.0
1929
+ - type: manhattan_accuracy
1930
+ value: 61.75000000000001
1931
+ - type: manhattan_ap
1932
+ value: 59.58504334461159
1933
+ - type: manhattan_f1
1934
+ value: 62.50861474844934
1935
+ - type: manhattan_precision
1936
+ value: 45.46365914786967
1937
+ - type: manhattan_recall
1938
+ value: 100.0
1939
+ - type: max_accuracy
1940
+ value: 61.75000000000001
1941
+ - type: max_ap
1942
+ value: 59.58504334461159
1943
+ - type: max_f1
1944
+ value: 62.50861474844934
1945
+ - task:
1946
+ type: Retrieval
1947
+ dataset:
1948
+ name: MTEB QuoraRetrieval
1949
+ type: mteb/quora
1950
+ config: default
1951
+ split: test
1952
+ revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
1953
+ metrics:
1954
+ - type: map_at_1
1955
+ value: 70.186
1956
+ - type: map_at_10
1957
+ value: 83.875
1958
+ - type: map_at_100
1959
+ value: 84.514
1960
+ - type: map_at_1000
1961
+ value: 84.53500000000001
1962
+ - type: map_at_3
1963
+ value: 80.926
1964
+ - type: map_at_5
1965
+ value: 82.797
1966
+ - type: mrr_at_1
1967
+ value: 80.82000000000001
1968
+ - type: mrr_at_10
1969
+ value: 87.068
1970
+ - type: mrr_at_100
1971
+ value: 87.178
1972
+ - type: mrr_at_1000
1973
+ value: 87.18
1974
+ - type: mrr_at_3
1975
+ value: 86.055
1976
+ - type: mrr_at_5
1977
+ value: 86.763
1978
+ - type: ndcg_at_1
1979
+ value: 80.84
1980
+ - type: ndcg_at_10
1981
+ value: 87.723
1982
+ - type: ndcg_at_100
1983
+ value: 88.98700000000001
1984
+ - type: ndcg_at_1000
1985
+ value: 89.13499999999999
1986
+ - type: ndcg_at_3
1987
+ value: 84.821
1988
+ - type: ndcg_at_5
1989
+ value: 86.441
1990
+ - type: precision_at_1
1991
+ value: 80.84
1992
+ - type: precision_at_10
1993
+ value: 13.270000000000001
1994
+ - type: precision_at_100
1995
+ value: 1.516
1996
+ - type: precision_at_1000
1997
+ value: 0.156
1998
+ - type: precision_at_3
1999
+ value: 37.013
2000
+ - type: precision_at_5
2001
+ value: 24.37
2002
+ - type: recall_at_1
2003
+ value: 70.186
2004
+ - type: recall_at_10
2005
+ value: 94.948
2006
+ - type: recall_at_100
2007
+ value: 99.223
2008
+ - type: recall_at_1000
2009
+ value: 99.932
2010
+ - type: recall_at_3
2011
+ value: 86.57000000000001
2012
+ - type: recall_at_5
2013
+ value: 91.157
2014
+ - task:
2015
+ type: Clustering
2016
+ dataset:
2017
+ name: MTEB RedditClustering
2018
+ type: mteb/reddit-clustering
2019
+ config: default
2020
+ split: test
2021
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2022
+ metrics:
2023
+ - type: v_measure
2024
+ value: 50.24198927949519
2025
+ - task:
2026
+ type: Clustering
2027
+ dataset:
2028
+ name: MTEB RedditClusteringP2P
2029
+ type: mteb/reddit-clustering-p2p
2030
+ config: default
2031
+ split: test
2032
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
2033
+ metrics:
2034
+ - type: v_measure
2035
+ value: 61.452073078765544
2036
+ - task:
2037
+ type: Retrieval
2038
+ dataset:
2039
+ name: MTEB SCIDOCS
2040
+ type: mteb/scidocs
2041
+ config: default
2042
+ split: test
2043
+ revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
2044
+ metrics:
2045
+ - type: map_at_1
2046
+ value: 4.972
2047
+ - type: map_at_10
2048
+ value: 12.314
2049
+ - type: map_at_100
2050
+ value: 14.333000000000002
2051
+ - type: map_at_1000
2052
+ value: 14.628
2053
+ - type: map_at_3
2054
+ value: 8.972
2055
+ - type: map_at_5
2056
+ value: 10.724
2057
+ - type: mrr_at_1
2058
+ value: 24.4
2059
+ - type: mrr_at_10
2060
+ value: 35.257
2061
+ - type: mrr_at_100
2062
+ value: 36.297000000000004
2063
+ - type: mrr_at_1000
2064
+ value: 36.363
2065
+ - type: mrr_at_3
2066
+ value: 32.267
2067
+ - type: mrr_at_5
2068
+ value: 33.942
2069
+ - type: ndcg_at_1
2070
+ value: 24.4
2071
+ - type: ndcg_at_10
2072
+ value: 20.47
2073
+ - type: ndcg_at_100
2074
+ value: 28.111000000000004
2075
+ - type: ndcg_at_1000
2076
+ value: 33.499
2077
+ - type: ndcg_at_3
2078
+ value: 19.975
2079
+ - type: ndcg_at_5
2080
+ value: 17.293
2081
+ - type: precision_at_1
2082
+ value: 24.4
2083
+ - type: precision_at_10
2084
+ value: 10.440000000000001
2085
+ - type: precision_at_100
2086
+ value: 2.136
2087
+ - type: precision_at_1000
2088
+ value: 0.34299999999999997
2089
+ - type: precision_at_3
2090
+ value: 18.733
2091
+ - type: precision_at_5
2092
+ value: 15.120000000000001
2093
+ - type: recall_at_1
2094
+ value: 4.972
2095
+ - type: recall_at_10
2096
+ value: 21.157
2097
+ - type: recall_at_100
2098
+ value: 43.335
2099
+ - type: recall_at_1000
2100
+ value: 69.652
2101
+ - type: recall_at_3
2102
+ value: 11.417
2103
+ - type: recall_at_5
2104
+ value: 15.317
2105
+ - task:
2106
+ type: STS
2107
+ dataset:
2108
+ name: MTEB SICK-R
2109
+ type: mteb/sickr-sts
2110
+ config: default
2111
+ split: test
2112
+ revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
2113
+ metrics:
2114
+ - type: cos_sim_pearson
2115
+ value: 76.70295978506286
2116
+ - type: cos_sim_spearman
2117
+ value: 70.91162732446628
2118
+ - type: euclidean_pearson
2119
+ value: 73.25693688746031
2120
+ - type: euclidean_spearman
2121
+ value: 70.91162556180127
2122
+ - type: manhattan_pearson
2123
+ value: 73.27735004735767
2124
+ - type: manhattan_spearman
2125
+ value: 70.8856787022704
2126
+ - task:
2127
+ type: STS
2128
+ dataset:
2129
+ name: MTEB STS12
2130
+ type: mteb/sts12-sts
2131
+ config: default
2132
+ split: test
2133
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
2134
+ metrics:
2135
+ - type: cos_sim_pearson
2136
+ value: 67.55878682646774
2137
+ - type: cos_sim_spearman
2138
+ value: 66.10824660353681
2139
+ - type: euclidean_pearson
2140
+ value: 64.93937270068541
2141
+ - type: euclidean_spearman
2142
+ value: 66.10824660353681
2143
+ - type: manhattan_pearson
2144
+ value: 64.96325555978984
2145
+ - type: manhattan_spearman
2146
+ value: 66.12052481638577
2147
+ - task:
2148
+ type: STS
2149
+ dataset:
2150
+ name: MTEB STS13
2151
+ type: mteb/sts13-sts
2152
+ config: default
2153
+ split: test
2154
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2155
+ metrics:
2156
+ - type: cos_sim_pearson
2157
+ value: 79.79979774019496
2158
+ - type: cos_sim_spearman
2159
+ value: 79.82293444619499
2160
+ - type: euclidean_pearson
2161
+ value: 79.4830436509311
2162
+ - type: euclidean_spearman
2163
+ value: 79.82293444619499
2164
+ - type: manhattan_pearson
2165
+ value: 79.49785594799296
2166
+ - type: manhattan_spearman
2167
+ value: 79.8280390479434
2168
+ - task:
2169
+ type: STS
2170
+ dataset:
2171
+ name: MTEB STS14
2172
+ type: mteb/sts14-sts
2173
+ config: default
2174
+ split: test
2175
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2176
+ metrics:
2177
+ - type: cos_sim_pearson
2178
+ value: 76.36839628231121
2179
+ - type: cos_sim_spearman
2180
+ value: 73.63809739428072
2181
+ - type: euclidean_pearson
2182
+ value: 74.93718121215906
2183
+ - type: euclidean_spearman
2184
+ value: 73.63810227650436
2185
+ - type: manhattan_pearson
2186
+ value: 74.8737197659424
2187
+ - type: manhattan_spearman
2188
+ value: 73.57534688126572
2189
+ - task:
2190
+ type: STS
2191
+ dataset:
2192
+ name: MTEB STS15
2193
+ type: mteb/sts15-sts
2194
+ config: default
2195
+ split: test
2196
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2197
+ metrics:
2198
+ - type: cos_sim_pearson
2199
+ value: 82.67482138157656
2200
+ - type: cos_sim_spearman
2201
+ value: 83.23485786963107
2202
+ - type: euclidean_pearson
2203
+ value: 82.50847772197369
2204
+ - type: euclidean_spearman
2205
+ value: 83.23485786963107
2206
+ - type: manhattan_pearson
2207
+ value: 82.48916218377576
2208
+ - type: manhattan_spearman
2209
+ value: 83.19756483500014
2210
+ - task:
2211
+ type: STS
2212
+ dataset:
2213
+ name: MTEB STS16
2214
+ type: mteb/sts16-sts
2215
+ config: default
2216
+ split: test
2217
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2218
+ metrics:
2219
+ - type: cos_sim_pearson
2220
+ value: 81.11626268793967
2221
+ - type: cos_sim_spearman
2222
+ value: 81.58184691061507
2223
+ - type: euclidean_pearson
2224
+ value: 80.65900869004938
2225
+ - type: euclidean_spearman
2226
+ value: 81.58184691061507
2227
+ - type: manhattan_pearson
2228
+ value: 80.67912306966772
2229
+ - type: manhattan_spearman
2230
+ value: 81.59957593393145
2231
+ - task:
2232
+ type: STS
2233
+ dataset:
2234
+ name: MTEB STS17 (en-en)
2235
+ type: mteb/sts17-crosslingual-sts
2236
+ config: en-en
2237
+ split: test
2238
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2239
+ metrics:
2240
+ - type: cos_sim_pearson
2241
+ value: 80.3140990821409
2242
+ - type: cos_sim_spearman
2243
+ value: 80.59196586367551
2244
+ - type: euclidean_pearson
2245
+ value: 80.73014029317672
2246
+ - type: euclidean_spearman
2247
+ value: 80.59196586367551
2248
+ - type: manhattan_pearson
2249
+ value: 80.5774325136987
2250
+ - type: manhattan_spearman
2251
+ value: 80.35102610546238
2252
+ - task:
2253
+ type: STS
2254
+ dataset:
2255
+ name: MTEB STS22 (en)
2256
+ type: mteb/sts22-crosslingual-sts
2257
+ config: en
2258
+ split: test
2259
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2260
+ metrics:
2261
+ - type: cos_sim_pearson
2262
+ value: 68.34450491529164
2263
+ - type: cos_sim_spearman
2264
+ value: 68.79451793414492
2265
+ - type: euclidean_pearson
2266
+ value: 68.75619738499324
2267
+ - type: euclidean_spearman
2268
+ value: 68.79451793414492
2269
+ - type: manhattan_pearson
2270
+ value: 68.75256119543882
2271
+ - type: manhattan_spearman
2272
+ value: 68.81836416978547
2273
+ - task:
2274
+ type: STS
2275
+ dataset:
2276
+ name: MTEB STSBenchmark
2277
+ type: mteb/stsbenchmark-sts
2278
+ config: default
2279
+ split: test
2280
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2281
+ metrics:
2282
+ - type: cos_sim_pearson
2283
+ value: 77.95580414975612
2284
+ - type: cos_sim_spearman
2285
+ value: 77.89671867168987
2286
+ - type: euclidean_pearson
2287
+ value: 77.61352097720862
2288
+ - type: euclidean_spearman
2289
+ value: 77.89671867168987
2290
+ - type: manhattan_pearson
2291
+ value: 77.65282228135632
2292
+ - type: manhattan_spearman
2293
+ value: 77.91730533156762
2294
+ - task:
2295
+ type: STS
2296
+ dataset:
2297
+ name: MTEB STSBenchmarkMultilingualSTS (en)
2298
+ type: PhilipMay/stsb_multi_mt
2299
+ config: en
2300
+ split: test
2301
+ revision: 93d57ef91790589e3ce9c365164337a8a78b7632
2302
+ metrics:
2303
+ - type: cos_sim_pearson
2304
+ value: 77.95580421496413
2305
+ - type: cos_sim_spearman
2306
+ value: 77.89671867168987
2307
+ - type: euclidean_pearson
2308
+ value: 77.61352107168794
2309
+ - type: euclidean_spearman
2310
+ value: 77.89671867168987
2311
+ - type: manhattan_pearson
2312
+ value: 77.65282237231794
2313
+ - type: manhattan_spearman
2314
+ value: 77.91730533156762
2315
+ - task:
2316
+ type: Reranking
2317
+ dataset:
2318
+ name: MTEB SciDocsRR
2319
+ type: mteb/scidocs-reranking
2320
+ config: default
2321
+ split: test
2322
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2323
+ metrics:
2324
+ - type: map
2325
+ value: 79.22928110092924
2326
+ - type: mrr
2327
+ value: 94.46700902583257
2328
+ - task:
2329
+ type: Retrieval
2330
+ dataset:
2331
+ name: MTEB SciFact
2332
+ type: mteb/scifact
2333
+ config: default
2334
+ split: test
2335
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2336
+ metrics:
2337
+ - type: map_at_1
2338
+ value: 56.011
2339
+ - type: map_at_10
2340
+ value: 65.544
2341
+ - type: map_at_100
2342
+ value: 66.034
2343
+ - type: map_at_1000
2344
+ value: 66.065
2345
+ - type: map_at_3
2346
+ value: 63.077000000000005
2347
+ - type: map_at_5
2348
+ value: 64.354
2349
+ - type: mrr_at_1
2350
+ value: 59.0
2351
+ - type: mrr_at_10
2352
+ value: 66.74900000000001
2353
+ - type: mrr_at_100
2354
+ value: 67.176
2355
+ - type: mrr_at_1000
2356
+ value: 67.203
2357
+ - type: mrr_at_3
2358
+ value: 65.056
2359
+ - type: mrr_at_5
2360
+ value: 65.956
2361
+ - type: ndcg_at_1
2362
+ value: 59.0
2363
+ - type: ndcg_at_10
2364
+ value: 69.95599999999999
2365
+ - type: ndcg_at_100
2366
+ value: 72.27
2367
+ - type: ndcg_at_1000
2368
+ value: 73.066
2369
+ - type: ndcg_at_3
2370
+ value: 65.837
2371
+ - type: ndcg_at_5
2372
+ value: 67.633
2373
+ - type: precision_at_1
2374
+ value: 59.0
2375
+ - type: precision_at_10
2376
+ value: 9.333
2377
+ - type: precision_at_100
2378
+ value: 1.053
2379
+ - type: precision_at_1000
2380
+ value: 0.11199999999999999
2381
+ - type: precision_at_3
2382
+ value: 26.0
2383
+ - type: precision_at_5
2384
+ value: 16.866999999999997
2385
+ - type: recall_at_1
2386
+ value: 56.011
2387
+ - type: recall_at_10
2388
+ value: 82.133
2389
+ - type: recall_at_100
2390
+ value: 92.767
2391
+ - type: recall_at_1000
2392
+ value: 99.0
2393
+ - type: recall_at_3
2394
+ value: 70.95
2395
+ - type: recall_at_5
2396
+ value: 75.556
2397
+ - task:
2398
+ type: PairClassification
2399
+ dataset:
2400
+ name: MTEB SprintDuplicateQuestions
2401
+ type: mteb/sprintduplicatequestions-pairclassification
2402
+ config: default
2403
+ split: test
2404
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2405
+ metrics:
2406
+ - type: cos_sim_accuracy
2407
+ value: 99.81584158415842
2408
+ - type: cos_sim_ap
2409
+ value: 94.67482871230736
2410
+ - type: cos_sim_f1
2411
+ value: 90.67201604814443
2412
+ - type: cos_sim_precision
2413
+ value: 90.94567404426559
2414
+ - type: cos_sim_recall
2415
+ value: 90.4
2416
+ - type: dot_accuracy
2417
+ value: 99.81584158415842
2418
+ - type: dot_ap
2419
+ value: 94.67482871230737
2420
+ - type: dot_f1
2421
+ value: 90.67201604814443
2422
+ - type: dot_precision
2423
+ value: 90.94567404426559
2424
+ - type: dot_recall
2425
+ value: 90.4
2426
+ - type: euclidean_accuracy
2427
+ value: 99.81584158415842
2428
+ - type: euclidean_ap
2429
+ value: 94.67482871230737
2430
+ - type: euclidean_f1
2431
+ value: 90.67201604814443
2432
+ - type: euclidean_precision
2433
+ value: 90.94567404426559
2434
+ - type: euclidean_recall
2435
+ value: 90.4
2436
+ - type: manhattan_accuracy
2437
+ value: 99.81188118811882
2438
+ - type: manhattan_ap
2439
+ value: 94.6409082219286
2440
+ - type: manhattan_f1
2441
+ value: 90.50949050949052
2442
+ - type: manhattan_precision
2443
+ value: 90.41916167664671
2444
+ - type: manhattan_recall
2445
+ value: 90.60000000000001
2446
+ - type: max_accuracy
2447
+ value: 99.81584158415842
2448
+ - type: max_ap
2449
+ value: 94.67482871230737
2450
+ - type: max_f1
2451
+ value: 90.67201604814443
2452
+ - task:
2453
+ type: Clustering
2454
+ dataset:
2455
+ name: MTEB StackExchangeClustering
2456
+ type: mteb/stackexchange-clustering
2457
+ config: default
2458
+ split: test
2459
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2460
+ metrics:
2461
+ - type: v_measure
2462
+ value: 62.63494511649264
2463
+ - task:
2464
+ type: Clustering
2465
+ dataset:
2466
+ name: MTEB StackExchangeClusteringP2P
2467
+ type: mteb/stackexchange-clustering-p2p
2468
+ config: default
2469
+ split: test
2470
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2471
+ metrics:
2472
+ - type: v_measure
2473
+ value: 37.165838327685755
2474
+ - task:
2475
+ type: Reranking
2476
+ dataset:
2477
+ name: MTEB StackOverflowDupQuestions
2478
+ type: mteb/stackoverflowdupquestions-reranking
2479
+ config: default
2480
+ split: test
2481
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2482
+ metrics:
2483
+ - type: map
2484
+ value: 51.384873075208084
2485
+ - type: mrr
2486
+ value: 52.196439181733304
2487
+ - task:
2488
+ type: Summarization
2489
+ dataset:
2490
+ name: MTEB SummEval
2491
+ type: mteb/summeval
2492
+ config: default
2493
+ split: test
2494
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2495
+ metrics:
2496
+ - type: cos_sim_pearson
2497
+ value: 32.13690355567596
2498
+ - type: cos_sim_spearman
2499
+ value: 31.38349778638125
2500
+ - type: dot_pearson
2501
+ value: 32.13689596691593
2502
+ - type: dot_spearman
2503
+ value: 31.38349778638125
2504
+ - task:
2505
+ type: Retrieval
2506
+ dataset:
2507
+ name: MTEB TRECCOVID
2508
+ type: mteb/trec-covid
2509
+ config: default
2510
+ split: test
2511
+ revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
2512
+ metrics:
2513
+ - type: map_at_1
2514
+ value: 0.26
2515
+ - type: map_at_10
2516
+ value: 2.08
2517
+ - type: map_at_100
2518
+ value: 12.598
2519
+ - type: map_at_1000
2520
+ value: 30.119
2521
+ - type: map_at_3
2522
+ value: 0.701
2523
+ - type: map_at_5
2524
+ value: 1.11
2525
+ - type: mrr_at_1
2526
+ value: 96.0
2527
+ - type: mrr_at_10
2528
+ value: 97.167
2529
+ - type: mrr_at_100
2530
+ value: 97.167
2531
+ - type: mrr_at_1000
2532
+ value: 97.167
2533
+ - type: mrr_at_3
2534
+ value: 96.667
2535
+ - type: mrr_at_5
2536
+ value: 97.167
2537
+ - type: ndcg_at_1
2538
+ value: 91.0
2539
+ - type: ndcg_at_10
2540
+ value: 81.69800000000001
2541
+ - type: ndcg_at_100
2542
+ value: 62.9
2543
+ - type: ndcg_at_1000
2544
+ value: 55.245999999999995
2545
+ - type: ndcg_at_3
2546
+ value: 86.397
2547
+ - type: ndcg_at_5
2548
+ value: 84.286
2549
+ - type: precision_at_1
2550
+ value: 96.0
2551
+ - type: precision_at_10
2552
+ value: 87.0
2553
+ - type: precision_at_100
2554
+ value: 64.86
2555
+ - type: precision_at_1000
2556
+ value: 24.512
2557
+ - type: precision_at_3
2558
+ value: 90.667
2559
+ - type: precision_at_5
2560
+ value: 88.8
2561
+ - type: recall_at_1
2562
+ value: 0.26
2563
+ - type: recall_at_10
2564
+ value: 2.238
2565
+ - type: recall_at_100
2566
+ value: 15.488
2567
+ - type: recall_at_1000
2568
+ value: 51.6
2569
+ - type: recall_at_3
2570
+ value: 0.716
2571
+ - type: recall_at_5
2572
+ value: 1.151
2573
+ - task:
2574
+ type: Retrieval
2575
+ dataset:
2576
+ name: MTEB Touche2020
2577
+ type: mteb/touche2020
2578
+ config: default
2579
+ split: test
2580
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2581
+ metrics:
2582
+ - type: map_at_1
2583
+ value: 3.376
2584
+ - type: map_at_10
2585
+ value: 13.142000000000001
2586
+ - type: map_at_100
2587
+ value: 19.763
2588
+ - type: map_at_1000
2589
+ value: 21.319
2590
+ - type: map_at_3
2591
+ value: 6.805999999999999
2592
+ - type: map_at_5
2593
+ value: 8.952
2594
+ - type: mrr_at_1
2595
+ value: 46.939
2596
+ - type: mrr_at_10
2597
+ value: 61.082
2598
+ - type: mrr_at_100
2599
+ value: 61.45
2600
+ - type: mrr_at_1000
2601
+ value: 61.468999999999994
2602
+ - type: mrr_at_3
2603
+ value: 57.483
2604
+ - type: mrr_at_5
2605
+ value: 59.931999999999995
2606
+ - type: ndcg_at_1
2607
+ value: 44.897999999999996
2608
+ - type: ndcg_at_10
2609
+ value: 32.35
2610
+ - type: ndcg_at_100
2611
+ value: 42.719
2612
+ - type: ndcg_at_1000
2613
+ value: 53.30200000000001
2614
+ - type: ndcg_at_3
2615
+ value: 37.724999999999994
2616
+ - type: ndcg_at_5
2617
+ value: 34.79
2618
+ - type: precision_at_1
2619
+ value: 46.939
2620
+ - type: precision_at_10
2621
+ value: 28.366999999999997
2622
+ - type: precision_at_100
2623
+ value: 8.429
2624
+ - type: precision_at_1000
2625
+ value: 1.557
2626
+ - type: precision_at_3
2627
+ value: 38.095
2628
+ - type: precision_at_5
2629
+ value: 33.469
2630
+ - type: recall_at_1
2631
+ value: 3.376
2632
+ - type: recall_at_10
2633
+ value: 20.164
2634
+ - type: recall_at_100
2635
+ value: 50.668
2636
+ - type: recall_at_1000
2637
+ value: 83.159
2638
+ - type: recall_at_3
2639
+ value: 8.155
2640
+ - type: recall_at_5
2641
+ value: 11.872
2642
+ - task:
2643
+ type: Classification
2644
+ dataset:
2645
+ name: MTEB ToxicConversationsClassification
2646
+ type: mteb/toxic_conversations_50k
2647
+ config: default
2648
+ split: test
2649
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
2650
+ metrics:
2651
+ - type: accuracy
2652
+ value: 66.739
2653
+ - type: ap
2654
+ value: 12.17931839228834
2655
+ - type: f1
2656
+ value: 51.05383188624636
2657
+ - task:
2658
+ type: Classification
2659
+ dataset:
2660
+ name: MTEB TweetSentimentExtractionClassification
2661
+ type: mteb/tweet_sentiment_extraction
2662
+ config: default
2663
+ split: test
2664
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2665
+ metrics:
2666
+ - type: accuracy
2667
+ value: 56.72891907187323
2668
+ - type: f1
2669
+ value: 56.997614557150946
2670
+ - task:
2671
+ type: Clustering
2672
+ dataset:
2673
+ name: MTEB TwentyNewsgroupsClustering
2674
+ type: mteb/twentynewsgroups-clustering
2675
+ config: default
2676
+ split: test
2677
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2678
+ metrics:
2679
+ - type: v_measure
2680
+ value: 39.825318429345224
2681
+ - task:
2682
+ type: PairClassification
2683
+ dataset:
2684
+ name: MTEB TwitterSemEval2015
2685
+ type: mteb/twittersemeval2015-pairclassification
2686
+ config: default
2687
+ split: test
2688
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2689
+ metrics:
2690
+ - type: cos_sim_accuracy
2691
+ value: 83.65619598259522
2692
+ - type: cos_sim_ap
2693
+ value: 66.17412885183877
2694
+ - type: cos_sim_f1
2695
+ value: 63.09125656951745
2696
+ - type: cos_sim_precision
2697
+ value: 57.63858577040594
2698
+ - type: cos_sim_recall
2699
+ value: 69.68337730870712
2700
+ - type: dot_accuracy
2701
+ value: 83.65619598259522
2702
+ - type: dot_ap
2703
+ value: 66.17413621964548
2704
+ - type: dot_f1
2705
+ value: 63.09125656951745
2706
+ - type: dot_precision
2707
+ value: 57.63858577040594
2708
+ - type: dot_recall
2709
+ value: 69.68337730870712
2710
+ - type: euclidean_accuracy
2711
+ value: 83.65619598259522
2712
+ - type: euclidean_ap
2713
+ value: 66.17412836413126
2714
+ - type: euclidean_f1
2715
+ value: 63.09125656951745
2716
+ - type: euclidean_precision
2717
+ value: 57.63858577040594
2718
+ - type: euclidean_recall
2719
+ value: 69.68337730870712
2720
+ - type: manhattan_accuracy
2721
+ value: 83.5548667819038
2722
+ - type: manhattan_ap
2723
+ value: 66.07998834521334
2724
+ - type: manhattan_f1
2725
+ value: 62.96433419721092
2726
+ - type: manhattan_precision
2727
+ value: 59.14676559239509
2728
+ - type: manhattan_recall
2729
+ value: 67.30870712401055
2730
+ - type: max_accuracy
2731
+ value: 83.65619598259522
2732
+ - type: max_ap
2733
+ value: 66.17413621964548
2734
+ - type: max_f1
2735
+ value: 63.09125656951745
2736
+ - task:
2737
+ type: PairClassification
2738
+ dataset:
2739
+ name: MTEB TwitterURLCorpus
2740
+ type: mteb/twitterurlcorpus-pairclassification
2741
+ config: default
2742
+ split: test
2743
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2744
+ metrics:
2745
+ - type: cos_sim_accuracy
2746
+ value: 88.55706911941631
2747
+ - type: cos_sim_ap
2748
+ value: 85.20971331546805
2749
+ - type: cos_sim_f1
2750
+ value: 77.28446050593702
2751
+ - type: cos_sim_precision
2752
+ value: 74.16135881104033
2753
+ - type: cos_sim_recall
2754
+ value: 80.6821681552202
2755
+ - type: dot_accuracy
2756
+ value: 88.55706911941631
2757
+ - type: dot_ap
2758
+ value: 85.2097154112633
2759
+ - type: dot_f1
2760
+ value: 77.28446050593702
2761
+ - type: dot_precision
2762
+ value: 74.16135881104033
2763
+ - type: dot_recall
2764
+ value: 80.6821681552202
2765
+ - type: euclidean_accuracy
2766
+ value: 88.55706911941631
2767
+ - type: euclidean_ap
2768
+ value: 85.20971719214488
2769
+ - type: euclidean_f1
2770
+ value: 77.28446050593702
2771
+ - type: euclidean_precision
2772
+ value: 74.16135881104033
2773
+ - type: euclidean_recall
2774
+ value: 80.6821681552202
2775
+ - type: manhattan_accuracy
2776
+ value: 88.52020025614158
2777
+ - type: manhattan_ap
2778
+ value: 85.17569799117058
2779
+ - type: manhattan_f1
2780
+ value: 77.27157773040933
2781
+ - type: manhattan_precision
2782
+ value: 72.79286638077734
2783
+ - type: manhattan_recall
2784
+ value: 82.33754234678165
2785
+ - type: max_accuracy
2786
+ value: 88.55706911941631
2787
+ - type: max_ap
2788
+ value: 85.20971719214488
2789
+ - type: max_f1
2790
+ value: 77.28446050593702
2791
+ - task:
2792
+ type: Clustering
2793
+ dataset:
2794
+ name: MTEB WikiCitiesClustering
2795
+ type: jinaai/cities_wiki_clustering
2796
+ config: default
2797
+ split: test
2798
+ revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
2799
+ metrics:
2800
+ - type: v_measure
2801
+ value: 85.63474850264893
2802
+ ---
2803
+
2804
+ # yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF
2805
+ This model was converted to GGUF format from [`Snowflake/snowflake-arctic-embed-m-long`](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-long) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2806
+ Refer to the [original model card](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-long) for more details on the model.
2807
+
2808
+ ## Use with llama.cpp
2809
+ Install llama.cpp through brew (works on Mac and Linux)
2810
+
2811
+ ```bash
2812
+ brew install llama.cpp
2813
+
2814
+ ```
2815
+ Invoke the llama.cpp server or the CLI.
2816
+
2817
+ ### CLI:
2818
+ ```bash
2819
+ llama-cli --hf-repo yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-long-q8_0.gguf -p "The meaning to life and the universe is"
2820
+ ```
2821
+
2822
+ ### Server:
2823
+ ```bash
2824
+ llama-server --hf-repo yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-long-q8_0.gguf -c 2048
2825
+ ```
2826
+
2827
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2828
+
2829
+ Step 1: Clone llama.cpp from GitHub.
2830
+ ```
2831
+ git clone https://github.com/ggerganov/llama.cpp
2832
+ ```
2833
+
2834
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2835
+ ```
2836
+ cd llama.cpp && LLAMA_CURL=1 make
2837
+ ```
2838
+
2839
+ Step 3: Run inference through the main binary.
2840
+ ```
2841
+ ./llama-cli --hf-repo yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-long-q8_0.gguf -p "The meaning to life and the universe is"
2842
+ ```
2843
+ or
2844
+ ```
2845
+ ./llama-server --hf-repo yixuan-chia/snowflake-arctic-embed-m-long-Q8_0-GGUF --hf-file snowflake-arctic-embed-m-long-q8_0.gguf -c 2048
2846
+ ```