--- base_model: stable-diffusion-xl-1.0-inpainting-0.1 tags: - stable-diffusion-xl - inpainting - virtual try-on license: cc-by-nc-sa-4.0 --- # Check out more codes on our [github repository](https://github.com/yisol/IDM-VTON)! # IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild This is an official implementation of paper 'Improving Diffusion Models for Authentic Virtual Try-on in the Wild' - [paper](https://arxiv.org/abs/2403.05139) - [project page](https://idm-vton.github.io/) 🤗 Try our huggingface [Demo](https://huggingface.co./spaces/yisol/IDM-VTON) ![teaser](assets/teaser.png)  ![teaser2](assets/teaser2.png)  ## TODO LIST - [x] demo model - [x] inference code - [ ] training code ## Acknowledgements For the demo, GPUs are supported from [zerogpu](https://huggingface.co./zero-gpu-explorers), and auto masking generation codes are based on [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) and [DCI-VTON](https://github.com/bcmi/DCI-VTON-Virtual-Try-On). Parts of the code are based on [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter). ## Citation ``` @article{choi2024improving, title={Improving Diffusion Models for Virtual Try-on}, author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo}, journal={arXiv preprint arXiv:2403.05139}, year={2024} } ``` ## License The codes and checkpoints in this repository are under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).