File size: 1,782 Bytes
b7b80c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-large-peft-mixSub
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-large-peft-mixSub

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co./google/flan-t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9408
- Rouge1: 39.2511
- Rouge2: 14.4613
- Rougel: 28.6907
- Rougelsum: 35.9795
- Gen Len: 97.8269

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.1134        | 1.0   | 1630 | 1.9559          | 39.0131 | 14.3369 | 28.4611 | 35.7936   | 96.2081 |
| 2.0783        | 2.0   | 3260 | 1.9438          | 39.0184 | 14.3571 | 28.5375 | 35.7466   | 99.4684 |
| 2.0722        | 3.0   | 4890 | 1.9408          | 39.2511 | 14.4613 | 28.6907 | 35.9795   | 97.8269 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2