--- license: other base_model: nvidia/mit-b1 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b1-finetuned-segments-ic-chip-sample results: [] --- # segformer-b1-finetuned-segments-ic-chip-sample This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co./nvidia/mit-b1) on the yijisuk/ic-chip-sample dataset. It achieves the following results on the evaluation set: - Loss: 0.1227 - Mean Iou: 0.4744 - Mean Accuracy: 0.9489 - Overall Accuracy: 0.9489 - Accuracy Unlabeled: nan - Accuracy Circuit: 0.9489 - Iou Unlabeled: 0.0 - Iou Circuit: 0.9489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:-------------:|:-----------:| | 0.4185 | 1.0 | 20 | 0.5878 | 0.3632 | 0.7265 | 0.7265 | nan | 0.7265 | 0.0 | 0.7265 | | 0.4477 | 2.0 | 40 | 0.4288 | 0.4894 | 0.9788 | 0.9788 | nan | 0.9788 | 0.0 | 0.9788 | | 0.9304 | 3.0 | 60 | 0.2053 | 0.4520 | 0.9041 | 0.9041 | nan | 0.9041 | 0.0 | 0.9041 | | 0.1409 | 4.0 | 80 | 0.1817 | 0.4738 | 0.9477 | 0.9477 | nan | 0.9477 | 0.0 | 0.9477 | | 0.392 | 5.0 | 100 | 0.1824 | 0.4900 | 0.9800 | 0.9800 | nan | 0.9800 | 0.0 | 0.9800 | | 0.1589 | 6.0 | 120 | 0.1594 | 0.4814 | 0.9628 | 0.9628 | nan | 0.9628 | 0.0 | 0.9628 | | 0.1848 | 7.0 | 140 | 0.1551 | 0.4625 | 0.9251 | 0.9251 | nan | 0.9251 | 0.0 | 0.9251 | | 0.0874 | 8.0 | 160 | 0.1503 | 0.4829 | 0.9657 | 0.9657 | nan | 0.9657 | 0.0 | 0.9657 | | 0.2172 | 9.0 | 180 | 0.1558 | 0.4591 | 0.9182 | 0.9182 | nan | 0.9182 | 0.0 | 0.9182 | | 0.9914 | 10.0 | 200 | 0.1457 | 0.4698 | 0.9396 | 0.9396 | nan | 0.9396 | 0.0 | 0.9396 | | 0.2387 | 11.0 | 220 | 0.1494 | 0.4709 | 0.9419 | 0.9419 | nan | 0.9419 | 0.0 | 0.9419 | | 0.1242 | 12.0 | 240 | 0.1463 | 0.4743 | 0.9486 | 0.9486 | nan | 0.9486 | 0.0 | 0.9486 | | 0.0819 | 13.0 | 260 | 0.1492 | 0.4757 | 0.9515 | 0.9515 | nan | 0.9515 | 0.0 | 0.9515 | | 0.6077 | 14.0 | 280 | 0.1442 | 0.4793 | 0.9586 | 0.9586 | nan | 0.9586 | 0.0 | 0.9586 | | 0.3156 | 15.0 | 300 | 0.1430 | 0.4813 | 0.9627 | 0.9627 | nan | 0.9627 | 0.0 | 0.9627 | | 0.2564 | 16.0 | 320 | 0.1483 | 0.4673 | 0.9347 | 0.9347 | nan | 0.9347 | 0.0 | 0.9347 | | 0.107 | 17.0 | 340 | 0.1467 | 0.4695 | 0.9390 | 0.9390 | nan | 0.9390 | 0.0 | 0.9390 | | 1.1592 | 18.0 | 360 | 0.1437 | 0.4814 | 0.9628 | 0.9628 | nan | 0.9628 | 0.0 | 0.9628 | | 0.0586 | 19.0 | 380 | 0.1396 | 0.4811 | 0.9622 | 0.9622 | nan | 0.9622 | 0.0 | 0.9622 | | 0.9815 | 20.0 | 400 | 0.1399 | 0.4812 | 0.9624 | 0.9624 | nan | 0.9624 | 0.0 | 0.9624 | | 0.3101 | 21.0 | 420 | 0.1411 | 0.4836 | 0.9672 | 0.9672 | nan | 0.9672 | 0.0 | 0.9672 | | 0.2325 | 22.0 | 440 | 0.1395 | 0.4672 | 0.9344 | 0.9344 | nan | 0.9344 | 0.0 | 0.9344 | | 0.1504 | 23.0 | 460 | 0.1420 | 0.4720 | 0.9441 | 0.9441 | nan | 0.9441 | 0.0 | 0.9441 | | 0.2831 | 24.0 | 480 | 0.1393 | 0.4697 | 0.9395 | 0.9395 | nan | 0.9395 | 0.0 | 0.9395 | | 0.0921 | 25.0 | 500 | 0.1418 | 0.4701 | 0.9401 | 0.9401 | nan | 0.9401 | 0.0 | 0.9401 | | 0.141 | 26.0 | 520 | 0.1318 | 0.4648 | 0.9296 | 0.9296 | nan | 0.9296 | 0.0 | 0.9296 | | 0.1381 | 27.0 | 540 | 0.1316 | 0.4697 | 0.9395 | 0.9395 | nan | 0.9395 | 0.0 | 0.9395 | | 1.1864 | 28.0 | 560 | 0.1292 | 0.4774 | 0.9548 | 0.9548 | nan | 0.9548 | 0.0 | 0.9548 | | 0.9492 | 29.0 | 580 | 0.1290 | 0.4709 | 0.9418 | 0.9418 | nan | 0.9418 | 0.0 | 0.9418 | | 0.3061 | 30.0 | 600 | 0.1303 | 0.4536 | 0.9071 | 0.9071 | nan | 0.9071 | 0.0 | 0.9071 | | 0.2511 | 31.0 | 620 | 0.1318 | 0.4725 | 0.9451 | 0.9451 | nan | 0.9451 | 0.0 | 0.9451 | | 0.2706 | 32.0 | 640 | 0.1284 | 0.4790 | 0.9580 | 0.9580 | nan | 0.9580 | 0.0 | 0.9580 | | 0.1508 | 33.0 | 660 | 0.1264 | 0.4698 | 0.9396 | 0.9396 | nan | 0.9396 | 0.0 | 0.9396 | | 0.2802 | 34.0 | 680 | 0.1308 | 0.4733 | 0.9467 | 0.9467 | nan | 0.9467 | 0.0 | 0.9467 | | 0.1897 | 35.0 | 700 | 0.1315 | 0.4681 | 0.9361 | 0.9361 | nan | 0.9361 | 0.0 | 0.9361 | | 0.1981 | 36.0 | 720 | 0.1289 | 0.4766 | 0.9531 | 0.9531 | nan | 0.9531 | 0.0 | 0.9531 | | 0.2742 | 37.0 | 740 | 0.1284 | 0.4818 | 0.9635 | 0.9635 | nan | 0.9635 | 0.0 | 0.9635 | | 0.0418 | 38.0 | 760 | 0.1240 | 0.4762 | 0.9525 | 0.9525 | nan | 0.9525 | 0.0 | 0.9525 | | 0.1946 | 39.0 | 780 | 0.1253 | 0.4750 | 0.9500 | 0.9500 | nan | 0.9500 | 0.0 | 0.9500 | | 0.1692 | 40.0 | 800 | 0.1253 | 0.4836 | 0.9672 | 0.9672 | nan | 0.9672 | 0.0 | 0.9672 | | 0.3071 | 41.0 | 820 | 0.1227 | 0.4751 | 0.9503 | 0.9503 | nan | 0.9503 | 0.0 | 0.9503 | | 0.2003 | 42.0 | 840 | 0.1250 | 0.4762 | 0.9524 | 0.9524 | nan | 0.9524 | 0.0 | 0.9524 | | 0.2099 | 43.0 | 860 | 0.1235 | 0.4740 | 0.9480 | 0.9480 | nan | 0.9480 | 0.0 | 0.9480 | | 0.1218 | 44.0 | 880 | 0.1222 | 0.4743 | 0.9486 | 0.9486 | nan | 0.9486 | 0.0 | 0.9486 | | 0.1583 | 45.0 | 900 | 0.1226 | 0.4708 | 0.9415 | 0.9415 | nan | 0.9415 | 0.0 | 0.9415 | | 0.1506 | 46.0 | 920 | 0.1215 | 0.4686 | 0.9372 | 0.9372 | nan | 0.9372 | 0.0 | 0.9372 | | 0.0643 | 47.0 | 940 | 0.1234 | 0.4779 | 0.9559 | 0.9559 | nan | 0.9559 | 0.0 | 0.9559 | | 0.2006 | 48.0 | 960 | 0.1213 | 0.4757 | 0.9515 | 0.9515 | nan | 0.9515 | 0.0 | 0.9515 | | 0.0783 | 49.0 | 980 | 0.1241 | 0.4726 | 0.9452 | 0.9452 | nan | 0.9452 | 0.0 | 0.9452 | | 0.0552 | 50.0 | 1000 | 0.1227 | 0.4744 | 0.9489 | 0.9489 | nan | 0.9489 | 0.0 | 0.9489 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu115 - Datasets 2.15.0 - Tokenizers 0.15.0