{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d4106e88430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4106e884c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4106e88550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4106e885e0>", "_build": "<function ActorCriticPolicy._build at 0x7d4106e88670>", "forward": "<function ActorCriticPolicy.forward at 0x7d4106e88700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4106e88790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4106e88820>", "_predict": "<function ActorCriticPolicy._predict at 0x7d4106e888b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4106e88940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4106e889d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4106e88a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d4106e2ce40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727840288577054529, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAeEr6VBxg+BFKGPiCBbb48ySW9YOGGPQAAAAAAAAAAZrHdvCnIKrqAgnczt2H4LnHQlrrC9s6zAACAPwAAgD9mfm279hNlvMgaaT4Uyh2+hxtyvbrNIb8AAIA/AACAP7O64b1ITok+IjvKPMveZL7YJZS9/dMUPAAAAAAAAAAAoL0rPlRPh7yNAQo+C8iTvGKd7r3FfG29AACAPwAAgD8AhEu8nCUKvFilwrzD0G49fLVRPb1IBjsAAIA/AACAP/NvRr4S+gk/WBRPuxUWtb5CNbm9JpPdPAAAAAAAAAAAYBU3vuT9Mz+mS9C9dPucvht9Kr7wQu68AAAAAAAAAAC2pne+OM/lPo7hWj5zN3S+Vod6vdIso7sAAAAAAAAAALP2gr1uQrc/mhQbvzGy2bxN3To8yDvwvQAAAAAAAAAAphc7vkAHqD+SABG/92r1vhe/Yb52bVe+AAAAAAAAAACmnLm9j3Y5ulBqnjfVofExJ7SpOoJgtrYAAIA/AACAP5rnmLyPGi+6IleJMrzvojCPmyS7SHn+sgAAgD8AAIA/zR3vPVrRbz9CyRk+oxHgvgIZGT4mmXS9AAAAAAAAAABAZ6Y9JiujP+auFz9AuxS/ha1SPGvoKD4AAAAAAAAAAM3GhDzXoz650EQducSiELOcEw27Co09OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+kDlHSWquMAWyUTRABjAF0lEdAk2VsBMi8nXV9lChoBkdAcJZYxcmjTWgHTRwBaAhHQJNmLdKujh11fZQoaAZHQHBr5fhMrVhoB02IAWgIR0CTZtbqhUR4dX2UKGgGR0BxMCgHu7YkaAdNNgFoCEdAk2cFoHs1K3V9lChoBkdAcz0PdEb5umgHTQkBaAhHQJNnIVWS2Yx1fZQoaAZHQHBXsQEpy6toB00wAWgIR0CTZ3IN3GGVdX2UKGgGR0BukOn4wh4daAdNVwFoCEdAk2i/Mnqmj3V9lChoBkdAcFj/GlyimGgHS/poCEdAk2jkELYwqXV9lChoBkdAcaCMFEAo5WgHTXgBaAhHQJNqcUKzAvd1fZQoaAZHQHDYq4+bExZoB0vxaAhHQJNr9IH1OCZ1fZQoaAZHQHAp0jgQ6IZoB0vvaAhHQJNsGWHDaXd1fZQoaAZHQG1yIfKZDzBoB01CAWgIR0CTbHWXkYGddX2UKGgGR0BxxA+iaiK0aAdNGQFoCEdAk2yLhFVktnV9lChoBkdAbmXqbBoEjmgHTQMBaAhHQJNttaX8fmt1fZQoaAZHQHAkoj4YaYNoB00xAWgIR0CTbguUliSadX2UKGgGR0BwnX9pAUtaaAdNXQFoCEdAk24fZAY51nV9lChoBkdAbX9q5byH22gHTSUBaAhHQJNuUd1dPcl1fZQoaAZHQHCru/pMYdhoB0v2aAhHQJNu3oJRfnh1fZQoaAZHQG7HoexOclRoB00aAWgIR0CTbyzd1uBMdX2UKGgGR0BvobBoEjgRaAdNEgFoCEdAk3AXDR+jM3V9lChoBkdAcaAyoXKr72gHTQgBaAhHQJNxaitaIN51fZQoaAZHQHLHilWOp85oB01NAWgIR0CTcXE4vN/wdX2UKGgGR0BuEqOR1X/6aAdNKAFoCEdAk3K08FINE3V9lChoBkdAcU7JTVDrq2gHTRoBaAhHQJN0JDzAeq91fZQoaAZHQHKrLHEMspZoB00AAWgIR0CTdNVtGd7OdX2UKGgGR0BurdEiMYMwaAdNpgFoCEdAk3T4jfNzKnV9lChoBkdAcRcBFNL13GgHTRUBaAhHQJN1Z+hGpdd1fZQoaAZHQG1xtf5ULlVoB00fAWgIR0CTdh+xGDtgdX2UKGgGR0Bx8D6vaDf4aAdNAwFoCEdAk3ZZPykKu3V9lChoBkdAc4WCSA6Mi2gHS/poCEdAk3c6yWzF/HV9lChoBkdAbgoCvHLidmgHTUUBaAhHQJN3csZpBX11fZQoaAZHQHCumBe5WiloB00hAWgIR0CTd+C6H0sfdX2UKGgGR0ByQLztkWhzaAdNMAFoCEdAk3gTtgKF7HV9lChoBkdAbnsAiFCb+mgHS/loCEdAk3h/y9VWCHV9lChoBkdAcHBTWXkYGmgHTVABaAhHQJN6MXXRPXV1fZQoaAZHQHNbz238XN1oB02DAWgIR0CTersK9f1IdX2UKGgGR0BvgBrWRRuTaAdNOQFoCEdAk3vi+tbLU3V9lChoBkdAcTSQ1rIo3WgHS+NoCEdAk3xFIRRMvnV9lChoBkdAcnVYMvysjmgHTS4BaAhHQJN81W8yvcJ1fZQoaAZHQHIVHEMspXpoB00LAWgIR0CTfPnh86V/dX2UKGgGR0Bu2yhWYF7laAdNbwFoCEdAk33CCe2/jHV9lChoBkdAUA29ugpSaWgHS6FoCEdAk33vpt78enV9lChoBkdAbcdWJaaCtmgHTRcBaAhHQJN/q7tiQT51fZQoaAZHQHGCj3qRlpZoB00jAWgIR0CTf9ek56t1dX2UKGgGR0Bwc3NY8uBdaAdNRwFoCEdAk3/Tx5LRKHV9lChoBkdAc7IZZSvTw2gHTRMBaAhHQJOAXyOJcgR1fZQoaAZHQG2rCjL0SRNoB00jAWgIR0CTgZcoH9m6dX2UKGgGR0BwWhIXj2i+aAdL82gIR0CTmYk7fYSQdX2UKGgGR0BxCQXgtOEeaAdNZQFoCEdAk5nSzcAR03V9lChoBkdAbrk3vQWvbGgHTREBaAhHQJOcVjPOY6Z1fZQoaAZHQHIk/ci4axZoB0vsaAhHQJOcrLRrrPd1fZQoaAZHQHCdbPUrkKhoB00sAWgIR0CTnQ+V1Oj7dX2UKGgGR0BwFSdtl7MQaAdNIAFoCEdAk52phOP/73V9lChoBkdAb3Knpjc2zmgHTQcCaAhHQJOd3ifg75p1fZQoaAZHQHAE4R/ViF1oB0vpaAhHQJOe4Qsf7rN1fZQoaAZHQG8v9Nvfj0doB0vwaAhHQJOe/4QBgeB1fZQoaAZHQG3afFzdUKloB0vtaAhHQJOfEKE384x1fZQoaAZHQHFHyquKXOZoB000AWgIR0CTn6YQ8OkMdX2UKGgGR0BwVkpWmxdIaAdNowFoCEdAk5/PoJRfnnV9lChoBkdAcqQACW/rSmgHTXQBaAhHQJOgxJiAlOZ1fZQoaAZHQG8Tkmx+rlxoB01cAWgIR0CTo3CrcTJydX2UKGgGR0BzOM2rGR3eaAdNBwFoCEdAk6OaekHlfnV9lChoBkdAcqSsD4gzQGgHS+toCEdAk6WUsrd30XV9lChoBkdAcJ2QMhHLBGgHS/9oCEdAk6X/Olfqo3V9lChoBkdAcOXexfOUuGgHTQ8BaAhHQJOmUK2KEWZ1fZQoaAZHQG/kT8YQ8OloB0vcaAhHQJOm6Fg2Ift1fZQoaAZHQHFyh1LamGdoB00BAWgIR0CTpvcGkep5dX2UKGgGR0Bx3KhmGucMaAdNyQFoCEdAk6kVVT72tnV9lChoBkdAbXb974SHumgHTSgBaAhHQJOpu1rqMWJ1fZQoaAZHQHFAr2xptaZoB0v2aAhHQJOp78m8dxR1fZQoaAZHQHLWRPfsNUhoB00tAWgIR0CTqhJ1aGHpdX2UKGgGR0Bzl3R/mT1TaAdNWQFoCEdAk6p2hqTKT3V9lChoBkdAa+zHG0eEI2gHTeoBaAhHQJOr3/4qPOp1fZQoaAZHQHBAZZSvTw5oB01NAWgIR0CTq/9gWrOrdX2UKGgGR0Bx+lAs052haAdNbwFoCEdAk60KySmqHXV9lChoBkdAcTaEIgNgB2gHS/doCEdAk67Lehwl0HV9lChoBkdAcSzx6OYIB2gHTTMBaAhHQJOu+V0Lc9J1fZQoaAZHQHIY8/2TPjZoB0vpaAhHQJOvnyz5XU91fZQoaAZHQHFaxw++ueVoB00CAWgIR0CTr+cwg1WKdX2UKGgGR0BuOCEL6UJOaAdNVgFoCEdAk7ButGNJe3V9lChoBkdAbXz56dDpkmgHTS4BaAhHQJOxRs54nnd1fZQoaAZHQHHCIXGff41oB00bAWgIR0CTsXU6xPfsdX2UKGgGR0BGePppvgm7aAdLpGgIR0CTsgY51eSkdX2UKGgGR0Bao9iQT238aAdN6ANoCEdAk7KAkcCHRHV9lChoBkdATjMRzzVc2WgHS8doCEdAk7MEVeruIHV9lChoBkdAcBssQ/X5FmgHTSUBaAhHQJO0BjTa0yB1fZQoaAZHQHAnko4MnZ1oB00uAWgIR0CTtHsnAqNIdX2UKGgGR0BOi5qM3qA0aAdL9WgIR0CTtWelsP8RdX2UKGgGR0BwQoXZXdTHaAdNZQFoCEdAk7WAXdj5K3V9lChoBkdASW5KODJ2dWgHS8BoCEdAk7XgyAQQMHV9lChoBkdAcr0CtihFmWgHTXEBaAhHQJO2oaJhvzh1fZQoaAZHQHCOt69kBjpoB00FAWgIR0CTt2tpmEoOdX2UKGgGR0Brlz5TIeYEaAdNpQFoCEdAk7ilAJLM93V9lChoBkdAbtyjKxLTQWgHTRoBaAhHQJO46NBF/hF1fZQoaAZHQHEkmm+CbttoB01YAWgIR0CTuftXgccVdX2UKGgGR0BxnTra/RE4aAdNEgFoCEdAk7qNhVlwtXV9lChoBkdAcbLsGgSOBGgHTVgBaAhHQJO7b81n/T91fZQoaAZHQHDIi5Zr57BoB00ZAWgIR0CTvB74i5d4dX2UKGgGR0Bx9lCTlkpaaAdNXAFoCEdAk7z1hsqJ/HV9lChoBkdAcg0rZJ04i2gHTQwBaAhHQJO9GG5+Ytx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |