--- language: - ko - en base_model: facebook/mbart-large-50-many-to-many-mmt tags: - generated_from_trainer metrics: - bleu model-index: - name: ko-en_mbartLarge_mid3 results: [] --- # ko-en_mbartLarge_mid3 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co./facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3246 - Bleu: 22.9623 - Gen Len: 18.7197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 1000 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.5377 | 0.23 | 2000 | 1.6122 | 17.2009 | 18.7106 | | 1.3891 | 0.46 | 4000 | 1.5059 | 19.3345 | 18.7688 | | 1.2812 | 0.7 | 6000 | 1.4348 | 20.6032 | 18.9022 | | 1.2374 | 0.93 | 8000 | 1.4035 | 21.2391 | 18.8434 | | 1.1734 | 1.16 | 10000 | 1.4039 | 21.304 | 18.9964 | | 1.1531 | 1.39 | 12000 | 1.3694 | 21.9087 | 18.8573 | | 1.1158 | 1.62 | 14000 | 1.3574 | 22.004 | 18.5485 | | 1.0941 | 1.86 | 16000 | 1.3457 | 21.9785 | 18.7119 | | 0.9809 | 2.09 | 18000 | 1.3495 | 22.7983 | 18.8011 | | 0.9834 | 2.32 | 20000 | 1.3429 | 22.5654 | 18.9416 | | 0.9981 | 2.55 | 22000 | 1.3246 | 22.9493 | 18.7364 | | 1.0074 | 2.78 | 24000 | 1.3539 | 22.3874 | 18.4428 | | 0.9752 | 3.02 | 26000 | 1.3587 | 22.1907 | 18.8139 | | 0.8858 | 3.25 | 28000 | 1.3457 | 22.82 | 18.8021 | | 0.8895 | 3.48 | 30000 | 1.3603 | 22.1575 | 18.5638 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1