File size: 1,869 Bytes
55f816e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
language:
- en
- ko
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: en-ko_mid
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# en-ko_mid

This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co./facebook/mbart-large-50-many-to-many-mmt) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5319
- Bleu: 11.2991
- Gen Len: 16.268

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 1.4354        | 1.12  | 1500 | 1.5319          | 11.2991 | 16.268  |
| 0.9158        | 2.24  | 3000 | 1.5989          | 11.9085 | 16.3331 |
| 0.4823        | 3.37  | 4500 | 1.7407          | 11.2452 | 15.771  |
| 0.3005        | 4.49  | 6000 | 1.8923          | 11.0872 | 16.3668 |
| 0.1969        | 5.61  | 7500 | 2.0164          | 11.449  | 15.8694 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1