--- base_model: yentinglin/Taiwan-LLM-13B-v2.0-chat inference: false language: - zh library_name: transformers license: apache-2.0 model_creator: yentinglin model_name: Taiwan-LLM-13B-v2.0 model_type: llama pipeline_tag: text-generation quantized_by: yentinglin tags: - finetuned --- # TaiwanLLM 13B v2.0 - AWQ - Model creator: [Yenting Lin](https://huggingface.co./yentinglin) - Original model: [TaiwanLLM 13B v2.0](https://huggingface.co./yentinglin/Taiwan-LLM-13B-v2.0-chat) ## Description This repo contains AWQ model files for [TaiwanLLM 13B v2.0](https://huggingface.co./yentinglin/Taiwan-LLM-13B-v2.0-chat). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co./docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code Taiwan LLM Logo # 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟 # Model Card for Taiwan LLM 13B v2.0 chat Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan. Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning. This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances. It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance. For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf). ## Model description - **Model type:** A 13B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw) - **Finetuned from model:** [yentinglin/Taiwan-LLM-13B-v2.0-base](https://huggingface.co./yentinglin/Taiwan-LLM-13B-v2.0-base) ### Model Sources - **Repository:** https://github.com/MiuLab/Taiwan-LLaMa - **Demo:** https://twllm.com/ ## Performance ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/HTwIzw6RDha2-PhuWqSuI.png) TMMLUS+ score: 24.76727075757576 ## Intended uses Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: ```python # pip install transformers>=4.34 # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="yentinglin/Taiwan-LLM-13B-v2.0-chat", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co./docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "你是一個人工智慧助理", }, {"role": "user", "content": "東北季風如何影響台灣氣候?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ### Training hyperparameters ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/MdvHwdUvH-c926qyRAw7K.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/kKpkvxDzOEyiAoTqmzRYO.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/FsnlJ_fkRxf7fn5RKZnjE.png) The following hyperparameters were used during training: - learning_rate: 5e-05 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 5.0 ## Citation If you find Taiwan LLM is useful in your work, please cite it with: ``` @misc{lin2023taiwan, title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model}, author={Yen-Ting Lin and Yun-Nung Chen}, year={2023}, eprint={2311.17487}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # Acknowledgement Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project.