--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.942 --- # distilbert-emotion This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1270 - Accuracy: 0.942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 0.1759 | 0.9305 | | 0.3324 | 2.0 | 500 | 0.1329 | 0.9355 | | 0.3324 | 3.0 | 750 | 0.1270 | 0.942 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1