--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - trl - sft - generated_from_trainer metrics: - accuracy model-index: - name: bert-large-uncased-swag-full results: [] --- # bert-large-uncased-swag-full This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co./google-bert/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5367 - Accuracy: 0.8024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7878 | 1.0 | 4597 | 0.6288 | 0.7612 | | 0.4475 | 2.0 | 9194 | 0.6195 | 0.7849 | | 0.215 | 3.0 | 13791 | 0.7408 | 0.7893 | | 0.0957 | 4.0 | 18388 | 1.3131 | 0.7976 | | 0.0274 | 5.0 | 22985 | 1.5367 | 0.8024 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1