ychenNLP commited on
Commit
4458cee
·
1 Parent(s): 6d59b1c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -36,7 +36,7 @@ datasets:
36
  >>> re_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-relation-extraction")
37
  >>> re_pip = pipeline("text-classification", model=re_model, tokenizer=re_tokenizer)
38
 
39
- def process_ner_output(entity_mention, input):
40
  re_input = []
41
  for idx1 in range(len(entity_mention) - 1):
42
  for idx2 in range(idx1 + 1, len(entity_mention)):
@@ -50,7 +50,7 @@ def process_ner_output(entity_mention, input):
50
  ent_2_s = ent_2['start']
51
  ent_2_e = ent_2['end']
52
  new_re_input = ""
53
- for c_idx, c in enumerate(input):
54
  if c_idx == ent_1_s:
55
  new_re_input += "<{}>".format(ent_1_type)
56
  elif c_idx == ent_1_e:
@@ -60,7 +60,7 @@ def process_ner_output(entity_mention, input):
60
  elif c_idx == ent_2_e:
61
  new_re_input += "</{}>".format(ent_2_type)
62
  new_re_input += c
63
- re_input.append({"re_input": new_re_input, "arg1": ent_1, "arg2": ent_2, "input": input})
64
  return re_input
65
 
66
  def post_process_re_output(re_output, re_input, ner_output):
 
36
  >>> re_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-relation-extraction")
37
  >>> re_pip = pipeline("text-classification", model=re_model, tokenizer=re_tokenizer)
38
 
39
+ def process_ner_output(entity_mention, inputs):
40
  re_input = []
41
  for idx1 in range(len(entity_mention) - 1):
42
  for idx2 in range(idx1 + 1, len(entity_mention)):
 
50
  ent_2_s = ent_2['start']
51
  ent_2_e = ent_2['end']
52
  new_re_input = ""
53
+ for c_idx, c in enumerate(inputs):
54
  if c_idx == ent_1_s:
55
  new_re_input += "<{}>".format(ent_1_type)
56
  elif c_idx == ent_1_e:
 
60
  elif c_idx == ent_2_e:
61
  new_re_input += "</{}>".format(ent_2_type)
62
  new_re_input += c
63
+ re_input.append({"re_input": new_re_input, "arg1": ent_1, "arg2": ent_2, "input": inputs})
64
  return re_input
65
 
66
  def post_process_re_output(re_output, re_input, ner_output):