yangwj2011
commited on
Commit
·
f66a105
1
Parent(s):
eca1775
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.83 +/- 0.20
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:106822b0b097e0baeba0841912c1161f2ec58c4e9da9d607649c260b01b3d623
|
3 |
+
size 108110
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f490b7de160>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f490b7e0140>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 800000,
|
45 |
+
"_total_timesteps": 800000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1679075006381481173,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAohfjPpUDkLvuHgw/ohfjPpUDkLvuHgw/ohfjPpUDkLvuHgw/ohfjPpUDkLvuHgw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMop5P8TB2D8pbak+AzcaPyDphT8WpwU/f25RPyeasb/YzxS/BnuDv/et0D9m8Xy+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACiF+M+lQOQu+4eDD/+F5c8SMOIuBoyNTyiF+M+lQOQu+4eDD/+F5c8SMOIuBoyNTyiF+M+lQOQu+4eDD/+F5c8SMOIuBoyNTyiF+M+lQOQu+4eDD/+F5c8SMOIuBoyNTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.44353968 -0.00439496 0.54734695]\n [ 0.44353968 -0.00439496 0.54734695]\n [ 0.44353968 -0.00439496 0.54734695]\n [ 0.44353968 -0.00439496 0.54734695]]",
|
60 |
+
"desired_goal": "[[ 0.97476494 1.6934133 0.33091095]\n [ 0.6024019 1.0461769 0.5220808 ]\n [ 0.8180923 -1.3875169 -0.58129644]\n [-1.0271919 1.630309 -0.24701461]]",
|
61 |
+
"observation": "[[ 4.4353968e-01 -4.3949583e-03 5.4734695e-01 1.8444058e-02\n -6.5213593e-05 1.1059308e-02]\n [ 4.4353968e-01 -4.3949583e-03 5.4734695e-01 1.8444058e-02\n -6.5213593e-05 1.1059308e-02]\n [ 4.4353968e-01 -4.3949583e-03 5.4734695e-01 1.8444058e-02\n -6.5213593e-05 1.1059308e-02]\n [ 4.4353968e-01 -4.3949583e-03 5.4734695e-01 1.8444058e-02\n -6.5213593e-05 1.1059308e-02]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABAfkvVKo0b3Wbik9R2Gtu4soEb5dQzc+R3X8PYW2Sr2Ocmg+aDJ9PPNS973oFO49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.11134151 -0.10237183 0.04136547]\n [-0.00529114 -0.14175622 0.17896791]\n [ 0.12327056 -0.04949047 0.22699949]\n [ 0.01545391 -0.12076368 0.11625081]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITvIjfsVa97+UhpRSlIwBbJRLMowBdJRHQKGtlAj6eoV1fZQoaAZoCWgPQwjOUUfH1UgAwJSGlFKUaBVLMmgWR0ChrU/NiYsvdX2UKGgGaAloD0MIKa+V0F0S7b+UhpRSlGgVSzJoFkdAoa0JDeCTU3V9lChoBmgJaA9DCKPMBplk5PO/lIaUUpRoFUsyaBZHQKGsw6GQCCB1fZQoaAZoCWgPQwj1EmOZfkn1v5SGlFKUaBVLMmgWR0ChrsZ5zHS4dX2UKGgGaAloD0MI4WHaN/eX/b+UhpRSlGgVSzJoFkdAoa6CScLBsXV9lChoBmgJaA9DCGzrp/+s+fu/lIaUUpRoFUsyaBZHQKGuO4S6DoR1fZQoaAZoCWgPQwg+sOO/QBDsv5SGlFKUaBVLMmgWR0ChrfX531SPdX2UKGgGaAloD0MIo+iBj8EK57+UhpRSlGgVSzJoFkdAobAXkWAPNHV9lChoBmgJaA9DCGMOgo5Wteu/lIaUUpRoFUsyaBZHQKGv01cdHUd1fZQoaAZoCWgPQwgR/G8lOzbvv5SGlFKUaBVLMmgWR0Chr4yZrpJPdX2UKGgGaAloD0MI8iiV8IQe/7+UhpRSlGgVSzJoFkdAoa9H/zasZHV9lChoBmgJaA9DCNKsbB/yVvm/lIaUUpRoFUsyaBZHQKGxVqubI911fZQoaAZoCWgPQwhmMhzPZ4AAwJSGlFKUaBVLMmgWR0ChsRJlBhQWdX2UKGgGaAloD0MIk+F4PgNq8L+UhpRSlGgVSzJoFkdAobDLwQUYbnV9lChoBmgJaA9DCLEzhc5rLPS/lIaUUpRoFUsyaBZHQKGwhlBhQWN1fZQoaAZoCWgPQwhfm42VmCfwv5SGlFKUaBVLMmgWR0ChssX668QJdX2UKGgGaAloD0MIIlM+BFVj9r+UhpRSlGgVSzJoFkdAobKB2OhkAnV9lChoBmgJaA9DCMCxZ89l6ua/lIaUUpRoFUsyaBZHQKGyOzZ6D5F1fZQoaAZoCWgPQwjUKY9uhEXxv5SGlFKUaBVLMmgWR0Chsfa5Gz8hdX2UKGgGaAloD0MIzY+/tKjP5r+UhpRSlGgVSzJoFkdAobQL7yhBaHV9lChoBmgJaA9DCA71u7A1OwHAlIaUUpRoFUsyaBZHQKGzx75VOsV1fZQoaAZoCWgPQwgh6GhVS/r+v5SGlFKUaBVLMmgWR0Chs4EC3gDSdX2UKGgGaAloD0MI8BXdek2vA8CUhpRSlGgVSzJoFkdAobM7i4rjHXV9lChoBmgJaA9DCGSvd3+8V96/lIaUUpRoFUsyaBZHQKG1UeDnNgV1fZQoaAZoCWgPQwiAgLVq1wT5v5SGlFKUaBVLMmgWR0ChtQ2nbZezdX2UKGgGaAloD0MIbarukc0VAsCUhpRSlGgVSzJoFkdAobTG/vfCRHV9lChoBmgJaA9DCP9dnznrkwDAlIaUUpRoFUsyaBZHQKG0gX/HYHx1fZQoaAZoCWgPQwg10HzO3a79v5SGlFKUaBVLMmgWR0ChtocvduYQdX2UKGgGaAloD0MI4DDRIAWP97+UhpRSlGgVSzJoFkdAobZC9oN/fHV9lChoBmgJaA9DCK5H4XoUbvm/lIaUUpRoFUsyaBZHQKG1/GBnSOR1fZQoaAZoCWgPQwgwn6wYrg79v5SGlFKUaBVLMmgWR0Chtbbah6BzdX2UKGgGaAloD0MIEYqtoGnJ/7+UhpRSlGgVSzJoFkdAobfh68g6l3V9lChoBmgJaA9DCB04Z0RpL/e/lIaUUpRoFUsyaBZHQKG3naXa8Hx1fZQoaAZoCWgPQwibN04K857uv5SGlFKUaBVLMmgWR0Cht1fYSQHSdX2UKGgGaAloD0MIR5OLMbAO9b+UhpRSlGgVSzJoFkdAobcSU9pyqHV9lChoBmgJaA9DCElNu5hmuvq/lIaUUpRoFUsyaBZHQKG5GDq4YrJ1fZQoaAZoCWgPQwjjGwqfrQP2v5SGlFKUaBVLMmgWR0ChuNQCCBf8dX2UKGgGaAloD0MIVYSbjCpD7r+UhpRSlGgVSzJoFkdAobiNSn+AE3V9lChoBmgJaA9DCHJr0m2JnPa/lIaUUpRoFUsyaBZHQKG4R9n9Nvh1fZQoaAZoCWgPQwgyA5Xx73Pyv5SGlFKUaBVLMmgWR0ChulVXmvGIdX2UKGgGaAloD0MIOiS1UDJ597+UhpRSlGgVSzJoFkdAoboRBVuJlHV9lChoBmgJaA9DCARauoJtBPK/lIaUUpRoFUsyaBZHQKG5ylPacqh1fZQoaAZoCWgPQwhsJAnCFZD3v5SGlFKUaBVLMmgWR0ChuYTkhib2dX2UKGgGaAloD0MIJbA5B8+E+r+UhpRSlGgVSzJoFkdAobuMYKpkw3V9lChoBmgJaA9DCE+vlGWII/S/lIaUUpRoFUsyaBZHQKG7SCRwIdF1fZQoaAZoCWgPQwjpuYWuRKD9v5SGlFKUaBVLMmgWR0ChuwGHYYixdX2UKGgGaAloD0MIXfxtT5AY/L+UhpRSlGgVSzJoFkdAobq8DuBtlHV9lChoBmgJaA9DCCqNmNnnse6/lIaUUpRoFUsyaBZHQKG8xDfFaSt1fZQoaAZoCWgPQwiJsUy/RLz1v5SGlFKUaBVLMmgWR0ChvH/7aZhKdX2UKGgGaAloD0MI4gSm07qN7r+UhpRSlGgVSzJoFkdAobw5UvPC23V9lChoBmgJaA9DCMdim1Q0FvW/lIaUUpRoFUsyaBZHQKG789alk6N1fZQoaAZoCWgPQwh4Qq8/ic/yv5SGlFKUaBVLMmgWR0ChvfRZ2ZAqdX2UKGgGaAloD0MIu0ihLHy98r+UhpRSlGgVSzJoFkdAob2wEnssx3V9lChoBmgJaA9DCAgFpWjlPgHAlIaUUpRoFUsyaBZHQKG9aUt7KJV1fZQoaAZoCWgPQwi2L6AX7hz2v5SGlFKUaBVLMmgWR0ChvSPVNHpbdX2UKGgGaAloD0MID7kZbsAn/L+UhpRSlGgVSzJoFkdAob8inBLwnnV9lChoBmgJaA9DCAbzV8hcWf6/lIaUUpRoFUsyaBZHQKG+3lJYkmh1fZQoaAZoCWgPQwgAN4sXC0Pkv5SGlFKUaBVLMmgWR0Chvper+5vtdX2UKGgGaAloD0MIFobI6ev59L+UhpRSlGgVSzJoFkdAob5SI55qunV9lChoBmgJaA9DCMkh4uZUsvK/lIaUUpRoFUsyaBZHQKHAV6sySFJ1fZQoaAZoCWgPQwgyA5Xx7/Pwv5SGlFKUaBVLMmgWR0ChwBNkWhysdX2UKGgGaAloD0MI/1peud728r+UhpRSlGgVSzJoFkdAob/Mma6ST3V9lChoBmgJaA9DCCfeAZ60cO2/lIaUUpRoFUsyaBZHQKG/hxAB1cN1fZQoaAZoCWgPQwgtza0QVuPrv5SGlFKUaBVLMmgWR0ChwYNPpIMCdX2UKGgGaAloD0MIF7g81oyMAMCUhpRSlGgVSzJoFkdAocE/CyhSL3V9lChoBmgJaA9DCBHlC1pIgPu/lIaUUpRoFUsyaBZHQKHA+Fpwjt51fZQoaAZoCWgPQwhr1EM0ukPyv5SGlFKUaBVLMmgWR0ChwLLpiZv2dX2UKGgGaAloD0MIyVpDqb2I7r+UhpRSlGgVSzJoFkdAocKxlvqC6HV9lChoBmgJaA9DCERN9PkoI+q/lIaUUpRoFUsyaBZHQKHCbWjoIOZ1fZQoaAZoCWgPQwgpzHucaULzv5SGlFKUaBVLMmgWR0ChwibMPjGUdX2UKGgGaAloD0MINEjBU8hV8r+UhpRSlGgVSzJoFkdAocHhTdcjaHV9lChoBmgJaA9DCIMvTKYKxu2/lIaUUpRoFUsyaBZHQKHD3zK9wm51fZQoaAZoCWgPQwj0UrExryP3v5SGlFKUaBVLMmgWR0Chw5rdvbXZdX2UKGgGaAloD0MIbZBJRs6C8L+UhpRSlGgVSzJoFkdAocNUNQTEi3V9lChoBmgJaA9DCP1s5Lop5fS/lIaUUpRoFUsyaBZHQKHDDrJr+Hd1fZQoaAZoCWgPQwjnwkgvavfqv5SGlFKUaBVLMmgWR0ChxRECV8kVdX2UKGgGaAloD0MI290DdF/O8L+UhpRSlGgVSzJoFkdAocTM3Kji43V9lChoBmgJaA9DCPoq+dhd4Pq/lIaUUpRoFUsyaBZHQKHEhjtoi9t1fZQoaAZoCWgPQwjxhF5/Et/3v5SGlFKUaBVLMmgWR0ChxEC+10DEdX2UKGgGaAloD0MIXTXPEfku47+UhpRSlGgVSzJoFkdAocZbXBguy3V9lChoBmgJaA9DCMEeEynNpvG/lIaUUpRoFUsyaBZHQKHGFyDIzWR1fZQoaAZoCWgPQwj3OT5anHH1v5SGlFKUaBVLMmgWR0ChxdCAc1fmdX2UKGgGaAloD0MI1XjpJjHoAMCUhpRSlGgVSzJoFkdAocWLDqGDc3V9lChoBmgJaA9DCA+5GW7AZ/W/lIaUUpRoFUsyaBZHQKHHi9+PRzB1fZQoaAZoCWgPQwhZwARu3U38v5SGlFKUaBVLMmgWR0Chx0ecH4XXdX2UKGgGaAloD0MITyDsFKtG8L+UhpRSlGgVSzJoFkdAoccA4VARkHV9lChoBmgJaA9DCAwBwLFnT+a/lIaUUpRoFUsyaBZHQKHGu3Jgb6x1fZQoaAZoCWgPQwjEJFzII7jrv5SGlFKUaBVLMmgWR0ChyMvtD2J0dX2UKGgGaAloD0MIF4GxvoFJ8r+UhpRSlGgVSzJoFkdAociHqs2ehHV9lChoBmgJaA9DCBuciH5t/fS/lIaUUpRoFUsyaBZHQKHIQQiiZfF1fZQoaAZoCWgPQwgwZ7Yr9MHdv5SGlFKUaBVLMmgWR0Chx/uGbkOqdX2UKGgGaAloD0MI78uZ7Qp92b+UhpRSlGgVSzJoFkdAocoAuh9LH3V9lChoBmgJaA9DCNFALJs5pOC/lIaUUpRoFUsyaBZHQKHJvJAdGRV1fZQoaAZoCWgPQwghByXMtH3qv5SGlFKUaBVLMmgWR0ChyXXfZVXFdX2UKGgGaAloD0MIwRn8/WK26b+UhpRSlGgVSzJoFkdAockwYYR/VnV9lChoBmgJaA9DCC6qRUQx+eC/lIaUUpRoFUsyaBZHQKHLNueBg/l1fZQoaAZoCWgPQwhCBvLs8i3wv5SGlFKUaBVLMmgWR0ChyvKfFrEcdX2UKGgGaAloD0MIPSzUmuad4L+UhpRSlGgVSzJoFkdAocqr8zhxYXV9lChoBmgJaA9DCDSg3oyab/C/lIaUUpRoFUsyaBZHQKHKZnJ1aGJ1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 40000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04ece453ec43a7d3707f6667f9f1d1c2a8b04347039955171aafa409c3244690
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8304e936a040549078f4c119a61f8dea7c385da2ab9a26e9b3d61d89f6d4e1fe
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f490b7de160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f490b7e0140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 800000, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679075006381481173, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAohfjPpUDkLvuHgw/ohfjPpUDkLvuHgw/ohfjPpUDkLvuHgw/ohfjPpUDkLvuHgw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMop5P8TB2D8pbak+AzcaPyDphT8WpwU/f25RPyeasb/YzxS/BnuDv/et0D9m8Xy+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACiF+M+lQOQu+4eDD/+F5c8SMOIuBoyNTyiF+M+lQOQu+4eDD/+F5c8SMOIuBoyNTyiF+M+lQOQu+4eDD/+F5c8SMOIuBoyNTyiF+M+lQOQu+4eDD/+F5c8SMOIuBoyNTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.44353968 -0.00439496 0.54734695]\n [ 0.44353968 -0.00439496 0.54734695]\n [ 0.44353968 -0.00439496 0.54734695]\n [ 0.44353968 -0.00439496 0.54734695]]", "desired_goal": "[[ 0.97476494 1.6934133 0.33091095]\n [ 0.6024019 1.0461769 0.5220808 ]\n [ 0.8180923 -1.3875169 -0.58129644]\n [-1.0271919 1.630309 -0.24701461]]", "observation": "[[ 4.4353968e-01 -4.3949583e-03 5.4734695e-01 1.8444058e-02\n -6.5213593e-05 1.1059308e-02]\n [ 4.4353968e-01 -4.3949583e-03 5.4734695e-01 1.8444058e-02\n -6.5213593e-05 1.1059308e-02]\n [ 4.4353968e-01 -4.3949583e-03 5.4734695e-01 1.8444058e-02\n -6.5213593e-05 1.1059308e-02]\n [ 4.4353968e-01 -4.3949583e-03 5.4734695e-01 1.8444058e-02\n -6.5213593e-05 1.1059308e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABAfkvVKo0b3Wbik9R2Gtu4soEb5dQzc+R3X8PYW2Sr2Ocmg+aDJ9PPNS973oFO49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11134151 -0.10237183 0.04136547]\n [-0.00529114 -0.14175622 0.17896791]\n [ 0.12327056 -0.04949047 0.22699949]\n [ 0.01545391 -0.12076368 0.11625081]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITvIjfsVa97+UhpRSlIwBbJRLMowBdJRHQKGtlAj6eoV1fZQoaAZoCWgPQwjOUUfH1UgAwJSGlFKUaBVLMmgWR0ChrU/NiYsvdX2UKGgGaAloD0MIKa+V0F0S7b+UhpRSlGgVSzJoFkdAoa0JDeCTU3V9lChoBmgJaA9DCKPMBplk5PO/lIaUUpRoFUsyaBZHQKGsw6GQCCB1fZQoaAZoCWgPQwj1EmOZfkn1v5SGlFKUaBVLMmgWR0ChrsZ5zHS4dX2UKGgGaAloD0MI4WHaN/eX/b+UhpRSlGgVSzJoFkdAoa6CScLBsXV9lChoBmgJaA9DCGzrp/+s+fu/lIaUUpRoFUsyaBZHQKGuO4S6DoR1fZQoaAZoCWgPQwg+sOO/QBDsv5SGlFKUaBVLMmgWR0ChrfX531SPdX2UKGgGaAloD0MIo+iBj8EK57+UhpRSlGgVSzJoFkdAobAXkWAPNHV9lChoBmgJaA9DCGMOgo5Wteu/lIaUUpRoFUsyaBZHQKGv01cdHUd1fZQoaAZoCWgPQwgR/G8lOzbvv5SGlFKUaBVLMmgWR0Chr4yZrpJPdX2UKGgGaAloD0MI8iiV8IQe/7+UhpRSlGgVSzJoFkdAoa9H/zasZHV9lChoBmgJaA9DCNKsbB/yVvm/lIaUUpRoFUsyaBZHQKGxVqubI911fZQoaAZoCWgPQwhmMhzPZ4AAwJSGlFKUaBVLMmgWR0ChsRJlBhQWdX2UKGgGaAloD0MIk+F4PgNq8L+UhpRSlGgVSzJoFkdAobDLwQUYbnV9lChoBmgJaA9DCLEzhc5rLPS/lIaUUpRoFUsyaBZHQKGwhlBhQWN1fZQoaAZoCWgPQwhfm42VmCfwv5SGlFKUaBVLMmgWR0ChssX668QJdX2UKGgGaAloD0MIIlM+BFVj9r+UhpRSlGgVSzJoFkdAobKB2OhkAnV9lChoBmgJaA9DCMCxZ89l6ua/lIaUUpRoFUsyaBZHQKGyOzZ6D5F1fZQoaAZoCWgPQwjUKY9uhEXxv5SGlFKUaBVLMmgWR0Chsfa5Gz8hdX2UKGgGaAloD0MIzY+/tKjP5r+UhpRSlGgVSzJoFkdAobQL7yhBaHV9lChoBmgJaA9DCA71u7A1OwHAlIaUUpRoFUsyaBZHQKGzx75VOsV1fZQoaAZoCWgPQwgh6GhVS/r+v5SGlFKUaBVLMmgWR0Chs4EC3gDSdX2UKGgGaAloD0MI8BXdek2vA8CUhpRSlGgVSzJoFkdAobM7i4rjHXV9lChoBmgJaA9DCGSvd3+8V96/lIaUUpRoFUsyaBZHQKG1UeDnNgV1fZQoaAZoCWgPQwiAgLVq1wT5v5SGlFKUaBVLMmgWR0ChtQ2nbZezdX2UKGgGaAloD0MIbarukc0VAsCUhpRSlGgVSzJoFkdAobTG/vfCRHV9lChoBmgJaA9DCP9dnznrkwDAlIaUUpRoFUsyaBZHQKG0gX/HYHx1fZQoaAZoCWgPQwg10HzO3a79v5SGlFKUaBVLMmgWR0ChtocvduYQdX2UKGgGaAloD0MI4DDRIAWP97+UhpRSlGgVSzJoFkdAobZC9oN/fHV9lChoBmgJaA9DCK5H4XoUbvm/lIaUUpRoFUsyaBZHQKG1/GBnSOR1fZQoaAZoCWgPQwgwn6wYrg79v5SGlFKUaBVLMmgWR0Chtbbah6BzdX2UKGgGaAloD0MIEYqtoGnJ/7+UhpRSlGgVSzJoFkdAobfh68g6l3V9lChoBmgJaA9DCB04Z0RpL/e/lIaUUpRoFUsyaBZHQKG3naXa8Hx1fZQoaAZoCWgPQwibN04K857uv5SGlFKUaBVLMmgWR0Cht1fYSQHSdX2UKGgGaAloD0MIR5OLMbAO9b+UhpRSlGgVSzJoFkdAobcSU9pyqHV9lChoBmgJaA9DCElNu5hmuvq/lIaUUpRoFUsyaBZHQKG5GDq4YrJ1fZQoaAZoCWgPQwjjGwqfrQP2v5SGlFKUaBVLMmgWR0ChuNQCCBf8dX2UKGgGaAloD0MIVYSbjCpD7r+UhpRSlGgVSzJoFkdAobiNSn+AE3V9lChoBmgJaA9DCHJr0m2JnPa/lIaUUpRoFUsyaBZHQKG4R9n9Nvh1fZQoaAZoCWgPQwgyA5Xx73Pyv5SGlFKUaBVLMmgWR0ChulVXmvGIdX2UKGgGaAloD0MIOiS1UDJ597+UhpRSlGgVSzJoFkdAoboRBVuJlHV9lChoBmgJaA9DCARauoJtBPK/lIaUUpRoFUsyaBZHQKG5ylPacqh1fZQoaAZoCWgPQwhsJAnCFZD3v5SGlFKUaBVLMmgWR0ChuYTkhib2dX2UKGgGaAloD0MIJbA5B8+E+r+UhpRSlGgVSzJoFkdAobuMYKpkw3V9lChoBmgJaA9DCE+vlGWII/S/lIaUUpRoFUsyaBZHQKG7SCRwIdF1fZQoaAZoCWgPQwjpuYWuRKD9v5SGlFKUaBVLMmgWR0ChuwGHYYixdX2UKGgGaAloD0MIXfxtT5AY/L+UhpRSlGgVSzJoFkdAobq8DuBtlHV9lChoBmgJaA9DCCqNmNnnse6/lIaUUpRoFUsyaBZHQKG8xDfFaSt1fZQoaAZoCWgPQwiJsUy/RLz1v5SGlFKUaBVLMmgWR0ChvH/7aZhKdX2UKGgGaAloD0MI4gSm07qN7r+UhpRSlGgVSzJoFkdAobw5UvPC23V9lChoBmgJaA9DCMdim1Q0FvW/lIaUUpRoFUsyaBZHQKG789alk6N1fZQoaAZoCWgPQwh4Qq8/ic/yv5SGlFKUaBVLMmgWR0ChvfRZ2ZAqdX2UKGgGaAloD0MIu0ihLHy98r+UhpRSlGgVSzJoFkdAob2wEnssx3V9lChoBmgJaA9DCAgFpWjlPgHAlIaUUpRoFUsyaBZHQKG9aUt7KJV1fZQoaAZoCWgPQwi2L6AX7hz2v5SGlFKUaBVLMmgWR0ChvSPVNHpbdX2UKGgGaAloD0MID7kZbsAn/L+UhpRSlGgVSzJoFkdAob8inBLwnnV9lChoBmgJaA9DCAbzV8hcWf6/lIaUUpRoFUsyaBZHQKG+3lJYkmh1fZQoaAZoCWgPQwgAN4sXC0Pkv5SGlFKUaBVLMmgWR0Chvper+5vtdX2UKGgGaAloD0MIFobI6ev59L+UhpRSlGgVSzJoFkdAob5SI55qunV9lChoBmgJaA9DCMkh4uZUsvK/lIaUUpRoFUsyaBZHQKHAV6sySFJ1fZQoaAZoCWgPQwgyA5Xx7/Pwv5SGlFKUaBVLMmgWR0ChwBNkWhysdX2UKGgGaAloD0MI/1peud728r+UhpRSlGgVSzJoFkdAob/Mma6ST3V9lChoBmgJaA9DCCfeAZ60cO2/lIaUUpRoFUsyaBZHQKG/hxAB1cN1fZQoaAZoCWgPQwgtza0QVuPrv5SGlFKUaBVLMmgWR0ChwYNPpIMCdX2UKGgGaAloD0MIF7g81oyMAMCUhpRSlGgVSzJoFkdAocE/CyhSL3V9lChoBmgJaA9DCBHlC1pIgPu/lIaUUpRoFUsyaBZHQKHA+Fpwjt51fZQoaAZoCWgPQwhr1EM0ukPyv5SGlFKUaBVLMmgWR0ChwLLpiZv2dX2UKGgGaAloD0MIyVpDqb2I7r+UhpRSlGgVSzJoFkdAocKxlvqC6HV9lChoBmgJaA9DCERN9PkoI+q/lIaUUpRoFUsyaBZHQKHCbWjoIOZ1fZQoaAZoCWgPQwgpzHucaULzv5SGlFKUaBVLMmgWR0ChwibMPjGUdX2UKGgGaAloD0MINEjBU8hV8r+UhpRSlGgVSzJoFkdAocHhTdcjaHV9lChoBmgJaA9DCIMvTKYKxu2/lIaUUpRoFUsyaBZHQKHD3zK9wm51fZQoaAZoCWgPQwj0UrExryP3v5SGlFKUaBVLMmgWR0Chw5rdvbXZdX2UKGgGaAloD0MIbZBJRs6C8L+UhpRSlGgVSzJoFkdAocNUNQTEi3V9lChoBmgJaA9DCP1s5Lop5fS/lIaUUpRoFUsyaBZHQKHDDrJr+Hd1fZQoaAZoCWgPQwjnwkgvavfqv5SGlFKUaBVLMmgWR0ChxRECV8kVdX2UKGgGaAloD0MI290DdF/O8L+UhpRSlGgVSzJoFkdAocTM3Kji43V9lChoBmgJaA9DCPoq+dhd4Pq/lIaUUpRoFUsyaBZHQKHEhjtoi9t1fZQoaAZoCWgPQwjxhF5/Et/3v5SGlFKUaBVLMmgWR0ChxEC+10DEdX2UKGgGaAloD0MIXTXPEfku47+UhpRSlGgVSzJoFkdAocZbXBguy3V9lChoBmgJaA9DCMEeEynNpvG/lIaUUpRoFUsyaBZHQKHGFyDIzWR1fZQoaAZoCWgPQwj3OT5anHH1v5SGlFKUaBVLMmgWR0ChxdCAc1fmdX2UKGgGaAloD0MI1XjpJjHoAMCUhpRSlGgVSzJoFkdAocWLDqGDc3V9lChoBmgJaA9DCA+5GW7AZ/W/lIaUUpRoFUsyaBZHQKHHi9+PRzB1fZQoaAZoCWgPQwhZwARu3U38v5SGlFKUaBVLMmgWR0Chx0ecH4XXdX2UKGgGaAloD0MITyDsFKtG8L+UhpRSlGgVSzJoFkdAoccA4VARkHV9lChoBmgJaA9DCAwBwLFnT+a/lIaUUpRoFUsyaBZHQKHGu3Jgb6x1fZQoaAZoCWgPQwjEJFzII7jrv5SGlFKUaBVLMmgWR0ChyMvtD2J0dX2UKGgGaAloD0MIF4GxvoFJ8r+UhpRSlGgVSzJoFkdAociHqs2ehHV9lChoBmgJaA9DCBuciH5t/fS/lIaUUpRoFUsyaBZHQKHIQQiiZfF1fZQoaAZoCWgPQwgwZ7Yr9MHdv5SGlFKUaBVLMmgWR0Chx/uGbkOqdX2UKGgGaAloD0MI78uZ7Qp92b+UhpRSlGgVSzJoFkdAocoAuh9LH3V9lChoBmgJaA9DCNFALJs5pOC/lIaUUpRoFUsyaBZHQKHJvJAdGRV1fZQoaAZoCWgPQwghByXMtH3qv5SGlFKUaBVLMmgWR0ChyXXfZVXFdX2UKGgGaAloD0MIwRn8/WK26b+UhpRSlGgVSzJoFkdAockwYYR/VnV9lChoBmgJaA9DCC6qRUQx+eC/lIaUUpRoFUsyaBZHQKHLNueBg/l1fZQoaAZoCWgPQwhCBvLs8i3wv5SGlFKUaBVLMmgWR0ChyvKfFrEcdX2UKGgGaAloD0MIPSzUmuad4L+UhpRSlGgVSzJoFkdAocqr8zhxYXV9lChoBmgJaA9DCDSg3oyab/C/lIaUUpRoFUsyaBZHQKHKZnJ1aGJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (344 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.8324056619778275, "std_reward": 0.20482149666823088, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-17T18:25:17.911726"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5149e5be74d34cb754394c67784e4d5d25a67471565e9163b622700a1e03fa7
|
3 |
+
size 3056
|