--- license: other license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms language: - en - he library_name: transformers --- # Hebrew-Gemma-11B ### Base Models: - **07.03.2024:** [Hebrew-Gemma-11B](https://huggingface.co./yam-peleg/Hebrew-Gemma-11B) - **16.03.2024:** [Hebrew-Gemma-11B-V2](https://huggingface.co./yam-peleg/Hebrew-Gemma-11B-V2) ### Instruct Models: - **07.03.2024:** [Hebrew-Gemma-11B-Instruct](https://huggingface.co./yam-peleg/Hebrew-Gemma-11B-Instruct) Hebrew-Gemma-11B is an open-source Large Language Model (LLM) is a hebrew/english pretrained generative text model with 11 billion parameters, based on the Gemma-7B architecture from Google. It is continued pretrain of gemma-7b, extended to a larger scale and trained on 3B additional tokens of both English and Hebrew text data. The resulting model Gemma-11B is a powerful general-purpose language model suitable for a wide range of natural language processing tasks, with a focus on Hebrew language understanding and generation. ### Terms of Use As an extention of Gemma-7B, this model is subject to the original license and terms of use by Google. **Gemma-7B original Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) ### Usage Below are some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. ### Running on CPU ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B") model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B") input_text = "שלום! מה שלומך היום?" input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` ### Running on GPU ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B") model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B", device_map="auto") input_text = "שלום! מה שלומך היום?" input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` ### Running with 4-Bit precision ```python from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B") model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B", quantization_config = BitsAndBytesConfig(load_in_4bit=True)) input_text = "שלום! מה שלומך היום?" input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0]) ``` ### Benchmark Results - Coming Soon! ### Notice Hebrew-Gemma-11B is a pretrained base model and therefore does not have any moderation mechanisms. ### Authors - Trained by Yam Peleg. - In collaboration with Jonathan Rouach and Arjeo, inc.