yakazimir commited on
Commit
2915066
·
verified ·
1 Parent(s): 1470e72

Model save

Browse files
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: trl-lib/qwen1.5-0.5b-sft
5
+ tags:
6
+ - trl
7
+ - simpo
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: qwen_cCPO_entropy_0_01
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # qwen_cCPO_entropy_0_01
18
+
19
+ This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4896
22
+ - Sft Loss: 1.6913
23
+ - Rewards/chosen: -1.6159
24
+ - Rewards/rejected: -2.1942
25
+ - Rewards/accuracies: 0.6714
26
+ - Rewards/margins: 0.5783
27
+ - Logps/rejected: -2.1942
28
+ - Logps/chosen: -1.6159
29
+ - Logits/rejected: 0.2372
30
+ - Logits/chosen: 0.1346
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 1e-06
50
+ - train_batch_size: 2
51
+ - eval_batch_size: 4
52
+ - seed: 42
53
+ - distributed_type: multi-GPU
54
+ - gradient_accumulation_steps: 16
55
+ - total_train_batch_size: 32
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: cosine
58
+ - lr_scheduler_warmup_ratio: 0.1
59
+ - num_epochs: 3.0
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Sft Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
64
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
65
+ | 0.5602 | 0.2141 | 400 | 0.5593 | 1.3702 | -1.3432 | -1.4801 | 0.5579 | 0.1369 | -1.4801 | -1.3432 | 0.3397 | 0.2525 |
66
+ | 0.5448 | 0.4282 | 800 | 0.5318 | 1.4044 | -1.3785 | -1.6209 | 0.5883 | 0.2424 | -1.6209 | -1.3785 | 0.3618 | 0.2727 |
67
+ | 0.5415 | 0.6422 | 1200 | 0.5156 | 1.4648 | -1.4398 | -1.7890 | 0.6187 | 0.3493 | -1.7890 | -1.4398 | 0.3220 | 0.2312 |
68
+ | 0.4953 | 0.8563 | 1600 | 0.5101 | 1.4980 | -1.4449 | -1.7958 | 0.6261 | 0.3509 | -1.7958 | -1.4449 | 0.3743 | 0.2752 |
69
+ | 0.5743 | 1.0704 | 2000 | 0.5047 | 1.4884 | -1.4330 | -1.8072 | 0.6306 | 0.3742 | -1.8072 | -1.4330 | 0.3107 | 0.2131 |
70
+ | 0.4824 | 1.2845 | 2400 | 0.4963 | 1.6007 | -1.5341 | -2.0179 | 0.6536 | 0.4838 | -2.0179 | -1.5341 | 0.3099 | 0.2106 |
71
+ | 0.5266 | 1.4986 | 2800 | 0.4947 | 1.6155 | -1.5391 | -2.0193 | 0.6573 | 0.4801 | -2.0193 | -1.5391 | 0.2939 | 0.1953 |
72
+ | 0.5053 | 1.7127 | 3200 | 0.4936 | 1.5759 | -1.5037 | -1.9595 | 0.6484 | 0.4558 | -1.9595 | -1.5037 | 0.3131 | 0.2133 |
73
+ | 0.4712 | 1.9267 | 3600 | 0.4894 | 1.6467 | -1.5640 | -2.0770 | 0.6662 | 0.5129 | -2.0770 | -1.5640 | 0.3113 | 0.2089 |
74
+ | 0.4297 | 2.1408 | 4000 | 0.4894 | 1.6624 | -1.5827 | -2.1264 | 0.6699 | 0.5437 | -2.1264 | -1.5827 | 0.2311 | 0.1311 |
75
+ | 0.4418 | 2.3549 | 4400 | 0.4909 | 1.7121 | -1.6395 | -2.2277 | 0.6736 | 0.5882 | -2.2277 | -1.6395 | 0.2582 | 0.1535 |
76
+ | 0.4422 | 2.5690 | 4800 | 0.4894 | 1.6890 | -1.6151 | -2.1880 | 0.6699 | 0.5729 | -2.1880 | -1.6151 | 0.2371 | 0.1340 |
77
+ | 0.4463 | 2.7831 | 5200 | 0.4895 | 1.6851 | -1.6106 | -2.1856 | 0.6706 | 0.5751 | -2.1856 | -1.6106 | 0.2327 | 0.1306 |
78
+ | 0.4311 | 2.9972 | 5600 | 0.4896 | 1.6913 | -1.6159 | -2.1942 | 0.6714 | 0.5783 | -2.1942 | -1.6159 | 0.2372 | 0.1346 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.44.2
84
+ - Pytorch 2.2.2+cu121
85
+ - Datasets 2.18.0
86
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.999297541394882,
3
+ "total_flos": 0.0,
4
+ "train_loss": 0.49661777635968474,
5
+ "train_runtime": 31536.5493,
6
+ "train_samples": 59790,
7
+ "train_samples_per_second": 5.688,
8
+ "train_steps_per_second": 0.178
9
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.44.2"
6
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.999297541394882,
3
+ "total_flos": 0.0,
4
+ "train_loss": 0.49661777635968474,
5
+ "train_runtime": 31536.5493,
6
+ "train_samples": 59790,
7
+ "train_samples_per_second": 5.688,
8
+ "train_steps_per_second": 0.178
9
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff