Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +534 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:212940
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
10 |
+
widget:
|
11 |
+
- source_sentence: Ringkasan data strategis BPS 2012
|
12 |
+
sentences:
|
13 |
+
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Provinsi dan
|
14 |
+
Jenis Pekerjaan Utama, 2021
|
15 |
+
- Laporan Perekonomian Indonesia 2007
|
16 |
+
- Statistik Potensi Desa Provinsi Banten 2008
|
17 |
+
- source_sentence: tahun berapa ekspor naik 2,37% dan impor naik 30,30%?
|
18 |
+
sentences:
|
19 |
+
- Bulan November 2006 Ekspor Naik 2,37 % dan Impor Naik 30,30 %
|
20 |
+
- Indeks Harga Konsumen per Kelompok di 82 Kota <sup>1</sup> (2012=100)
|
21 |
+
- 'Februari 2022: Tingkat Pengangguran Terbuka (TPT) sebesar 5,83 persen dan Rata-rata
|
22 |
+
upah buruh sebesar 2,89 juta rupiah per bulan'
|
23 |
+
- source_sentence: akses air bersih di indonesia (2005-2009)
|
24 |
+
sentences:
|
25 |
+
- Desember 2016, Rupiah Terapresiasi 0,74 Persen Terhadap Dolar Amerika
|
26 |
+
- Statistik Air Bersih 2005-2009
|
27 |
+
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Pendidikan Tertinggi
|
28 |
+
yang Ditamatkan dan Lapangan Pekerjaan Utama di 17 Sektor (rupiah), 2018
|
29 |
+
- source_sentence: Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2014-2018, Buku
|
30 |
+
2 Pulau Jawa dan Bali
|
31 |
+
sentences:
|
32 |
+
- Profil Migran Hasil Susenas 2011-2012
|
33 |
+
- Statistik Gas Kota 2004-2008
|
34 |
+
- Jumlah kunjungan wisman ke Indonesia melalui pintu masuk utama pada Juni 2022
|
35 |
+
mencapai 345,44 ribu kunjungan dan Jumlah penumpang angkutan udara internasional
|
36 |
+
pada Juni 2022 naik 23,28 persen
|
37 |
+
- source_sentence: perubahan nilai tukar petani bulan mei 2017
|
38 |
+
sentences:
|
39 |
+
- Perkembangan Nilai Tukar Petani Mei 2017
|
40 |
+
- NTP Naik 0,15%, Harga Gabah Kualitas GKG Naik 0,98%
|
41 |
+
- Statistik Restoran/Rumah Makan Tahun 2014
|
42 |
+
datasets:
|
43 |
+
- yahyaabd/allstats-semantic-search-synthetic-dataset-v1
|
44 |
+
pipeline_tag: sentence-similarity
|
45 |
+
library_name: sentence-transformers
|
46 |
+
metrics:
|
47 |
+
- pearson_cosine
|
48 |
+
- spearman_cosine
|
49 |
+
model-index:
|
50 |
+
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
51 |
+
results:
|
52 |
+
- task:
|
53 |
+
type: semantic-similarity
|
54 |
+
name: Semantic Similarity
|
55 |
+
dataset:
|
56 |
+
name: allstats semantic search v1 3 dev
|
57 |
+
type: allstats-semantic-search-v1-3-dev
|
58 |
+
metrics:
|
59 |
+
- type: pearson_cosine
|
60 |
+
value: 0.9958745183830993
|
61 |
+
name: Pearson Cosine
|
62 |
+
- type: spearman_cosine
|
63 |
+
value: 0.96406478662103
|
64 |
+
name: Spearman Cosine
|
65 |
+
- task:
|
66 |
+
type: semantic-similarity
|
67 |
+
name: Semantic Similarity
|
68 |
+
dataset:
|
69 |
+
name: allstat semantic search v1 3 test
|
70 |
+
type: allstat-semantic-search-v1-3-test
|
71 |
+
metrics:
|
72 |
+
- type: pearson_cosine
|
73 |
+
value: 0.9960950217535739
|
74 |
+
name: Pearson Cosine
|
75 |
+
- type: spearman_cosine
|
76 |
+
value: 0.9647914507837114
|
77 |
+
name: Spearman Cosine
|
78 |
+
---
|
79 |
+
|
80 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
81 |
+
|
82 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
83 |
+
|
84 |
+
## Model Details
|
85 |
+
|
86 |
+
### Model Description
|
87 |
+
- **Model Type:** Sentence Transformer
|
88 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
|
89 |
+
- **Maximum Sequence Length:** 128 tokens
|
90 |
+
- **Output Dimensionality:** 768 dimensions
|
91 |
+
- **Similarity Function:** Cosine Similarity
|
92 |
+
- **Training Dataset:**
|
93 |
+
- [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1)
|
94 |
+
<!-- - **Language:** Unknown -->
|
95 |
+
<!-- - **License:** Unknown -->
|
96 |
+
|
97 |
+
### Model Sources
|
98 |
+
|
99 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
100 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
101 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
102 |
+
|
103 |
+
### Full Model Architecture
|
104 |
+
|
105 |
+
```
|
106 |
+
SentenceTransformer(
|
107 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
108 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
109 |
+
)
|
110 |
+
```
|
111 |
+
|
112 |
+
## Usage
|
113 |
+
|
114 |
+
### Direct Usage (Sentence Transformers)
|
115 |
+
|
116 |
+
First install the Sentence Transformers library:
|
117 |
+
|
118 |
+
```bash
|
119 |
+
pip install -U sentence-transformers
|
120 |
+
```
|
121 |
+
|
122 |
+
Then you can load this model and run inference.
|
123 |
+
```python
|
124 |
+
from sentence_transformers import SentenceTransformer
|
125 |
+
|
126 |
+
# Download from the 🤗 Hub
|
127 |
+
model = SentenceTransformer("yahyaabd/allstats-semantic-search-model-v1-3")
|
128 |
+
# Run inference
|
129 |
+
sentences = [
|
130 |
+
'perubahan nilai tukar petani bulan mei 2017',
|
131 |
+
'Perkembangan Nilai Tukar Petani Mei 2017',
|
132 |
+
'Statistik Restoran/Rumah Makan Tahun 2014',
|
133 |
+
]
|
134 |
+
embeddings = model.encode(sentences)
|
135 |
+
print(embeddings.shape)
|
136 |
+
# [3, 768]
|
137 |
+
|
138 |
+
# Get the similarity scores for the embeddings
|
139 |
+
similarities = model.similarity(embeddings, embeddings)
|
140 |
+
print(similarities.shape)
|
141 |
+
# [3, 3]
|
142 |
+
```
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Direct Usage (Transformers)
|
146 |
+
|
147 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
148 |
+
|
149 |
+
</details>
|
150 |
+
-->
|
151 |
+
|
152 |
+
<!--
|
153 |
+
### Downstream Usage (Sentence Transformers)
|
154 |
+
|
155 |
+
You can finetune this model on your own dataset.
|
156 |
+
|
157 |
+
<details><summary>Click to expand</summary>
|
158 |
+
|
159 |
+
</details>
|
160 |
+
-->
|
161 |
+
|
162 |
+
<!--
|
163 |
+
### Out-of-Scope Use
|
164 |
+
|
165 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
166 |
+
-->
|
167 |
+
|
168 |
+
## Evaluation
|
169 |
+
|
170 |
+
### Metrics
|
171 |
+
|
172 |
+
#### Semantic Similarity
|
173 |
+
|
174 |
+
* Datasets: `allstats-semantic-search-v1-3-dev` and `allstat-semantic-search-v1-3-test`
|
175 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
176 |
+
|
177 |
+
| Metric | allstats-semantic-search-v1-3-dev | allstat-semantic-search-v1-3-test |
|
178 |
+
|:--------------------|:----------------------------------|:----------------------------------|
|
179 |
+
| pearson_cosine | 0.9959 | 0.9961 |
|
180 |
+
| **spearman_cosine** | **0.9641** | **0.9648** |
|
181 |
+
|
182 |
+
<!--
|
183 |
+
## Bias, Risks and Limitations
|
184 |
+
|
185 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
186 |
+
-->
|
187 |
+
|
188 |
+
<!--
|
189 |
+
### Recommendations
|
190 |
+
|
191 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
192 |
+
-->
|
193 |
+
|
194 |
+
## Training Details
|
195 |
+
|
196 |
+
### Training Dataset
|
197 |
+
|
198 |
+
#### allstats-semantic-search-synthetic-dataset-v1
|
199 |
+
|
200 |
+
* Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [b13c0a7](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/b13c0a7412396a836cfbb887e140f183f3a6d65e)
|
201 |
+
* Size: 212,940 training samples
|
202 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
203 |
+
* Approximate statistics based on the first 1000 samples:
|
204 |
+
| | query | doc | label |
|
205 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
206 |
+
| type | string | string | float |
|
207 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 11.46 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.47 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.05</li></ul> |
|
208 |
+
* Samples:
|
209 |
+
| query | doc | label |
|
210 |
+
|:---------------------------------------------------------------|:-----------------------------------------------------------------------|:------------------|
|
211 |
+
| <code>aDta industri besar dan sedang Indonesia 2008</code> | <code>Statistik Industri Besar dan Sedang Indonesia 2008</code> | <code>0.9</code> |
|
212 |
+
| <code>profil bisnis konstruksi individu jawa barat 2022</code> | <code>Statistik Industri Manufaktur Indonesia 2015 - Bahan Baku</code> | <code>0.15</code> |
|
213 |
+
| <code>data statistik ekonomi indonesia</code> | <code>Nilai Tukar Valuta Asing di Indonesia 2014</code> | <code>0.08</code> |
|
214 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
215 |
+
```json
|
216 |
+
{
|
217 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
218 |
+
}
|
219 |
+
```
|
220 |
+
|
221 |
+
### Evaluation Dataset
|
222 |
+
|
223 |
+
#### allstats-semantic-search-synthetic-dataset-v1
|
224 |
+
|
225 |
+
* Dataset: [allstats-semantic-search-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1) at [b13c0a7](https://huggingface.co/datasets/yahyaabd/allstats-semantic-search-synthetic-dataset-v1/tree/b13c0a7412396a836cfbb887e140f183f3a6d65e)
|
226 |
+
* Size: 26,618 evaluation samples
|
227 |
+
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
|
228 |
+
* Approximate statistics based on the first 1000 samples:
|
229 |
+
| | query | doc | label |
|
230 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
231 |
+
| type | string | string | float |
|
232 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 11.38 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.63 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
|
233 |
+
* Samples:
|
234 |
+
| query | doc | label |
|
235 |
+
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------|:------------------|
|
236 |
+
| <code>tahun berapa ekspor naik 2,37% dan impor naik 30,30%?</code> | <code>Bulan November 2006 Ekspor Naik 2,37 % dan Impor Naik 30,30 %</code> | <code>1.0</code> |
|
237 |
+
| <code>Berapa produksi padi pada tahun 2023?</code> | <code>Produksi padi tahun lainnya</code> | <code>0.0</code> |
|
238 |
+
| <code>data statistik solus per aqua 2015</code> | <code>Statistik Solus Per Aqua (SPA) 2015</code> | <code>0.97</code> |
|
239 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
240 |
+
```json
|
241 |
+
{
|
242 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
243 |
+
}
|
244 |
+
```
|
245 |
+
|
246 |
+
### Training Hyperparameters
|
247 |
+
#### Non-Default Hyperparameters
|
248 |
+
|
249 |
+
- `eval_strategy`: steps
|
250 |
+
- `per_device_train_batch_size`: 64
|
251 |
+
- `per_device_eval_batch_size`: 64
|
252 |
+
- `num_train_epochs`: 16
|
253 |
+
- `warmup_ratio`: 0.1
|
254 |
+
- `fp16`: True
|
255 |
+
|
256 |
+
#### All Hyperparameters
|
257 |
+
<details><summary>Click to expand</summary>
|
258 |
+
|
259 |
+
- `overwrite_output_dir`: False
|
260 |
+
- `do_predict`: False
|
261 |
+
- `eval_strategy`: steps
|
262 |
+
- `prediction_loss_only`: True
|
263 |
+
- `per_device_train_batch_size`: 64
|
264 |
+
- `per_device_eval_batch_size`: 64
|
265 |
+
- `per_gpu_train_batch_size`: None
|
266 |
+
- `per_gpu_eval_batch_size`: None
|
267 |
+
- `gradient_accumulation_steps`: 1
|
268 |
+
- `eval_accumulation_steps`: None
|
269 |
+
- `torch_empty_cache_steps`: None
|
270 |
+
- `learning_rate`: 5e-05
|
271 |
+
- `weight_decay`: 0.0
|
272 |
+
- `adam_beta1`: 0.9
|
273 |
+
- `adam_beta2`: 0.999
|
274 |
+
- `adam_epsilon`: 1e-08
|
275 |
+
- `max_grad_norm`: 1.0
|
276 |
+
- `num_train_epochs`: 16
|
277 |
+
- `max_steps`: -1
|
278 |
+
- `lr_scheduler_type`: linear
|
279 |
+
- `lr_scheduler_kwargs`: {}
|
280 |
+
- `warmup_ratio`: 0.1
|
281 |
+
- `warmup_steps`: 0
|
282 |
+
- `log_level`: passive
|
283 |
+
- `log_level_replica`: warning
|
284 |
+
- `log_on_each_node`: True
|
285 |
+
- `logging_nan_inf_filter`: True
|
286 |
+
- `save_safetensors`: True
|
287 |
+
- `save_on_each_node`: False
|
288 |
+
- `save_only_model`: False
|
289 |
+
- `restore_callback_states_from_checkpoint`: False
|
290 |
+
- `no_cuda`: False
|
291 |
+
- `use_cpu`: False
|
292 |
+
- `use_mps_device`: False
|
293 |
+
- `seed`: 42
|
294 |
+
- `data_seed`: None
|
295 |
+
- `jit_mode_eval`: False
|
296 |
+
- `use_ipex`: False
|
297 |
+
- `bf16`: False
|
298 |
+
- `fp16`: True
|
299 |
+
- `fp16_opt_level`: O1
|
300 |
+
- `half_precision_backend`: auto
|
301 |
+
- `bf16_full_eval`: False
|
302 |
+
- `fp16_full_eval`: False
|
303 |
+
- `tf32`: None
|
304 |
+
- `local_rank`: 0
|
305 |
+
- `ddp_backend`: None
|
306 |
+
- `tpu_num_cores`: None
|
307 |
+
- `tpu_metrics_debug`: False
|
308 |
+
- `debug`: []
|
309 |
+
- `dataloader_drop_last`: False
|
310 |
+
- `dataloader_num_workers`: 0
|
311 |
+
- `dataloader_prefetch_factor`: None
|
312 |
+
- `past_index`: -1
|
313 |
+
- `disable_tqdm`: False
|
314 |
+
- `remove_unused_columns`: True
|
315 |
+
- `label_names`: None
|
316 |
+
- `load_best_model_at_end`: False
|
317 |
+
- `ignore_data_skip`: False
|
318 |
+
- `fsdp`: []
|
319 |
+
- `fsdp_min_num_params`: 0
|
320 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
321 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
322 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
323 |
+
- `deepspeed`: None
|
324 |
+
- `label_smoothing_factor`: 0.0
|
325 |
+
- `optim`: adamw_torch
|
326 |
+
- `optim_args`: None
|
327 |
+
- `adafactor`: False
|
328 |
+
- `group_by_length`: False
|
329 |
+
- `length_column_name`: length
|
330 |
+
- `ddp_find_unused_parameters`: None
|
331 |
+
- `ddp_bucket_cap_mb`: None
|
332 |
+
- `ddp_broadcast_buffers`: False
|
333 |
+
- `dataloader_pin_memory`: True
|
334 |
+
- `dataloader_persistent_workers`: False
|
335 |
+
- `skip_memory_metrics`: True
|
336 |
+
- `use_legacy_prediction_loop`: False
|
337 |
+
- `push_to_hub`: False
|
338 |
+
- `resume_from_checkpoint`: None
|
339 |
+
- `hub_model_id`: None
|
340 |
+
- `hub_strategy`: every_save
|
341 |
+
- `hub_private_repo`: None
|
342 |
+
- `hub_always_push`: False
|
343 |
+
- `gradient_checkpointing`: False
|
344 |
+
- `gradient_checkpointing_kwargs`: None
|
345 |
+
- `include_inputs_for_metrics`: False
|
346 |
+
- `include_for_metrics`: []
|
347 |
+
- `eval_do_concat_batches`: True
|
348 |
+
- `fp16_backend`: auto
|
349 |
+
- `push_to_hub_model_id`: None
|
350 |
+
- `push_to_hub_organization`: None
|
351 |
+
- `mp_parameters`:
|
352 |
+
- `auto_find_batch_size`: False
|
353 |
+
- `full_determinism`: False
|
354 |
+
- `torchdynamo`: None
|
355 |
+
- `ray_scope`: last
|
356 |
+
- `ddp_timeout`: 1800
|
357 |
+
- `torch_compile`: False
|
358 |
+
- `torch_compile_backend`: None
|
359 |
+
- `torch_compile_mode`: None
|
360 |
+
- `dispatch_batches`: None
|
361 |
+
- `split_batches`: None
|
362 |
+
- `include_tokens_per_second`: False
|
363 |
+
- `include_num_input_tokens_seen`: False
|
364 |
+
- `neftune_noise_alpha`: None
|
365 |
+
- `optim_target_modules`: None
|
366 |
+
- `batch_eval_metrics`: False
|
367 |
+
- `eval_on_start`: False
|
368 |
+
- `use_liger_kernel`: False
|
369 |
+
- `eval_use_gather_object`: False
|
370 |
+
- `average_tokens_across_devices`: False
|
371 |
+
- `prompts`: None
|
372 |
+
- `batch_sampler`: batch_sampler
|
373 |
+
- `multi_dataset_batch_sampler`: proportional
|
374 |
+
|
375 |
+
</details>
|
376 |
+
|
377 |
+
### Training Logs
|
378 |
+
<details><summary>Click to expand</summary>
|
379 |
+
|
380 |
+
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-v1-3-dev_spearman_cosine | allstat-semantic-search-v1-3-test_spearman_cosine |
|
381 |
+
|:-------:|:-----:|:-------------:|:---------------:|:-------------------------------------------------:|:-------------------------------------------------:|
|
382 |
+
| 0.1502 | 500 | 0.0579 | 0.0351 | 0.7132 | - |
|
383 |
+
| 0.3005 | 1000 | 0.03 | 0.0225 | 0.7589 | - |
|
384 |
+
| 0.4507 | 1500 | 0.0219 | 0.0185 | 0.7834 | - |
|
385 |
+
| 0.6010 | 2000 | 0.0181 | 0.0163 | 0.7946 | - |
|
386 |
+
| 0.7512 | 2500 | 0.0162 | 0.0147 | 0.7941 | - |
|
387 |
+
| 0.9014 | 3000 | 0.015 | 0.0147 | 0.8050 | - |
|
388 |
+
| 1.0517 | 3500 | 0.014 | 0.0131 | 0.7946 | - |
|
389 |
+
| 1.2019 | 4000 | 0.0119 | 0.0126 | 0.8038 | - |
|
390 |
+
| 1.3522 | 4500 | 0.0121 | 0.0128 | 0.8213 | - |
|
391 |
+
| 1.5024 | 5000 | 0.0117 | 0.0116 | 0.8268 | - |
|
392 |
+
| 1.6526 | 5500 | 0.0124 | 0.0117 | 0.8269 | - |
|
393 |
+
| 1.8029 | 6000 | 0.0111 | 0.0109 | 0.8421 | - |
|
394 |
+
| 1.9531 | 6500 | 0.0105 | 0.0108 | 0.8278 | - |
|
395 |
+
| 2.1034 | 7000 | 0.0091 | 0.0093 | 0.8460 | - |
|
396 |
+
| 2.2536 | 7500 | 0.0085 | 0.0091 | 0.8469 | - |
|
397 |
+
| 2.4038 | 8000 | 0.0079 | 0.0083 | 0.8595 | - |
|
398 |
+
| 2.5541 | 8500 | 0.0075 | 0.0085 | 0.8495 | - |
|
399 |
+
| 2.7043 | 9000 | 0.0073 | 0.0082 | 0.8614 | - |
|
400 |
+
| 2.8546 | 9500 | 0.0068 | 0.0077 | 0.8696 | - |
|
401 |
+
| 3.0048 | 10000 | 0.0066 | 0.0076 | 0.8669 | - |
|
402 |
+
| 3.1550 | 10500 | 0.0058 | 0.0072 | 0.8678 | - |
|
403 |
+
| 3.3053 | 11000 | 0.0056 | 0.0067 | 0.8703 | - |
|
404 |
+
| 3.4555 | 11500 | 0.0054 | 0.0067 | 0.8766 | - |
|
405 |
+
| 3.6058 | 12000 | 0.0054 | 0.0063 | 0.8678 | - |
|
406 |
+
| 3.7560 | 12500 | 0.0051 | 0.0061 | 0.8786 | - |
|
407 |
+
| 3.9062 | 13000 | 0.0052 | 0.0077 | 0.8699 | - |
|
408 |
+
| 4.0565 | 13500 | 0.005 | 0.0055 | 0.8859 | - |
|
409 |
+
| 4.2067 | 14000 | 0.0041 | 0.0054 | 0.8900 | - |
|
410 |
+
| 4.3570 | 14500 | 0.0038 | 0.0052 | 0.8892 | - |
|
411 |
+
| 4.5072 | 15000 | 0.0039 | 0.0050 | 0.8895 | - |
|
412 |
+
| 4.6575 | 15500 | 0.004 | 0.0052 | 0.8972 | - |
|
413 |
+
| 4.8077 | 16000 | 0.0042 | 0.0051 | 0.8927 | - |
|
414 |
+
| 4.9579 | 16500 | 0.0041 | 0.0052 | 0.8930 | - |
|
415 |
+
| 5.1082 | 17000 | 0.0034 | 0.0053 | 0.8998 | - |
|
416 |
+
| 5.2584 | 17500 | 0.003 | 0.0047 | 0.9023 | - |
|
417 |
+
| 5.4087 | 18000 | 0.0032 | 0.0045 | 0.9039 | - |
|
418 |
+
| 5.5589 | 18500 | 0.0032 | 0.0044 | 0.8996 | - |
|
419 |
+
| 5.7091 | 19000 | 0.0032 | 0.0041 | 0.9085 | - |
|
420 |
+
| 5.8594 | 19500 | 0.0032 | 0.0047 | 0.9072 | - |
|
421 |
+
| 6.0096 | 20000 | 0.0029 | 0.0037 | 0.9104 | - |
|
422 |
+
| 6.1599 | 20500 | 0.0024 | 0.0037 | 0.9112 | - |
|
423 |
+
| 6.3101 | 21000 | 0.0026 | 0.0039 | 0.9112 | - |
|
424 |
+
| 6.4603 | 21500 | 0.0024 | 0.0037 | 0.9157 | - |
|
425 |
+
| 6.6106 | 22000 | 0.0022 | 0.0038 | 0.9122 | - |
|
426 |
+
| 6.7608 | 22500 | 0.0025 | 0.0034 | 0.9170 | - |
|
427 |
+
| 6.9111 | 23000 | 0.0023 | 0.0034 | 0.9179 | - |
|
428 |
+
| 7.0613 | 23500 | 0.002 | 0.0031 | 0.9244 | - |
|
429 |
+
| 7.2115 | 24000 | 0.0019 | 0.0030 | 0.9250 | - |
|
430 |
+
| 7.3618 | 24500 | 0.0018 | 0.0032 | 0.9249 | - |
|
431 |
+
| 7.5120 | 25000 | 0.0022 | 0.0031 | 0.9162 | - |
|
432 |
+
| 7.6623 | 25500 | 0.0019 | 0.0030 | 0.9266 | - |
|
433 |
+
| 7.8125 | 26000 | 0.0019 | 0.0028 | 0.9297 | - |
|
434 |
+
| 7.9627 | 26500 | 0.0018 | 0.0028 | 0.9282 | - |
|
435 |
+
| 8.1130 | 27000 | 0.0015 | 0.0025 | 0.9324 | - |
|
436 |
+
| 8.2632 | 27500 | 0.0014 | 0.0027 | 0.9337 | - |
|
437 |
+
| 8.4135 | 28000 | 0.0015 | 0.0027 | 0.9327 | - |
|
438 |
+
| 8.5637 | 28500 | 0.0016 | 0.0027 | 0.9313 | - |
|
439 |
+
| 8.7139 | 29000 | 0.0016 | 0.0027 | 0.9333 | - |
|
440 |
+
| 8.8642 | 29500 | 0.0015 | 0.0025 | 0.9382 | - |
|
441 |
+
| 9.0144 | 30000 | 0.0014 | 0.0025 | 0.9375 | - |
|
442 |
+
| 9.1647 | 30500 | 0.0011 | 0.0024 | 0.9398 | - |
|
443 |
+
| 9.3149 | 31000 | 0.0012 | 0.0025 | 0.9384 | - |
|
444 |
+
| 9.4651 | 31500 | 0.0014 | 0.0025 | 0.9383 | - |
|
445 |
+
| 9.6154 | 32000 | 0.0013 | 0.0023 | 0.9410 | - |
|
446 |
+
| 9.7656 | 32500 | 0.0011 | 0.0023 | 0.9409 | - |
|
447 |
+
| 9.9159 | 33000 | 0.0012 | 0.0021 | 0.9432 | - |
|
448 |
+
| 10.0661 | 33500 | 0.0011 | 0.0021 | 0.9432 | - |
|
449 |
+
| 10.2163 | 34000 | 0.001 | 0.0021 | 0.9442 | - |
|
450 |
+
| 10.3666 | 34500 | 0.0009 | 0.0022 | 0.9436 | - |
|
451 |
+
| 10.5168 | 35000 | 0.001 | 0.0021 | 0.9468 | - |
|
452 |
+
| 10.6671 | 35500 | 0.001 | 0.0020 | 0.9471 | - |
|
453 |
+
| 10.8173 | 36000 | 0.001 | 0.0021 | 0.9467 | - |
|
454 |
+
| 10.9675 | 36500 | 0.0011 | 0.0021 | 0.9478 | - |
|
455 |
+
| 11.1178 | 37000 | 0.0008 | 0.0020 | 0.9493 | - |
|
456 |
+
| 11.2680 | 37500 | 0.0008 | 0.0019 | 0.9509 | - |
|
457 |
+
| 11.4183 | 38000 | 0.0008 | 0.0019 | 0.9504 | - |
|
458 |
+
| 11.5685 | 38500 | 0.0008 | 0.0019 | 0.9512 | - |
|
459 |
+
| 11.7188 | 39000 | 0.0008 | 0.0019 | 0.9516 | - |
|
460 |
+
| 11.8690 | 39500 | 0.0007 | 0.0019 | 0.9534 | - |
|
461 |
+
| 12.0192 | 40000 | 0.0007 | 0.0018 | 0.9539 | - |
|
462 |
+
| 12.1695 | 40500 | 0.0006 | 0.0018 | 0.9555 | - |
|
463 |
+
| 12.3197 | 41000 | 0.0006 | 0.0019 | 0.9551 | - |
|
464 |
+
| 12.4700 | 41500 | 0.0007 | 0.0019 | 0.9550 | - |
|
465 |
+
| 12.6202 | 42000 | 0.0008 | 0.0018 | 0.9552 | - |
|
466 |
+
| 12.7704 | 42500 | 0.0006 | 0.0017 | 0.9559 | - |
|
467 |
+
| 12.9207 | 43000 | 0.0006 | 0.0017 | 0.9568 | - |
|
468 |
+
| 13.0709 | 43500 | 0.0006 | 0.0017 | 0.9577 | - |
|
469 |
+
| 13.2212 | 44000 | 0.0005 | 0.0017 | 0.9581 | - |
|
470 |
+
| 13.3714 | 44500 | 0.0006 | 0.0017 | 0.9586 | - |
|
471 |
+
| 13.5216 | 45000 | 0.0005 | 0.0017 | 0.9587 | - |
|
472 |
+
| 13.6719 | 45500 | 0.0005 | 0.0017 | 0.9591 | - |
|
473 |
+
| 13.8221 | 46000 | 0.0006 | 0.0016 | 0.9600 | - |
|
474 |
+
| 13.9724 | 46500 | 0.0005 | 0.0016 | 0.9603 | - |
|
475 |
+
| 14.1226 | 47000 | 0.0005 | 0.0016 | 0.9609 | - |
|
476 |
+
| 14.2728 | 47500 | 0.0005 | 0.0016 | 0.9612 | - |
|
477 |
+
| 14.4231 | 48000 | 0.0005 | 0.0016 | 0.9611 | - |
|
478 |
+
| 14.5733 | 48500 | 0.0005 | 0.0016 | 0.9616 | - |
|
479 |
+
| 14.7236 | 49000 | 0.0004 | 0.0015 | 0.9625 | - |
|
480 |
+
| 14.8738 | 49500 | 0.0004 | 0.0016 | 0.9628 | - |
|
481 |
+
| 15.0240 | 50000 | 0.0004 | 0.0016 | 0.9631 | - |
|
482 |
+
| 15.1743 | 50500 | 0.0004 | 0.0016 | 0.9632 | - |
|
483 |
+
| 15.3245 | 51000 | 0.0004 | 0.0016 | 0.9633 | - |
|
484 |
+
| 15.4748 | 51500 | 0.0004 | 0.0016 | 0.9635 | - |
|
485 |
+
| 15.625 | 52000 | 0.0004 | 0.0015 | 0.9638 | - |
|
486 |
+
| 15.7752 | 52500 | 0.0004 | 0.0015 | 0.9640 | - |
|
487 |
+
| 15.9255 | 53000 | 0.0004 | 0.0015 | 0.9641 | - |
|
488 |
+
| 16.0 | 53248 | - | - | - | 0.9648 |
|
489 |
+
|
490 |
+
</details>
|
491 |
+
|
492 |
+
### Framework Versions
|
493 |
+
- Python: 3.10.12
|
494 |
+
- Sentence Transformers: 3.3.1
|
495 |
+
- Transformers: 4.47.1
|
496 |
+
- PyTorch: 2.2.2+cu121
|
497 |
+
- Accelerate: 1.2.1
|
498 |
+
- Datasets: 3.2.0
|
499 |
+
- Tokenizers: 0.21.0
|
500 |
+
|
501 |
+
## Citation
|
502 |
+
|
503 |
+
### BibTeX
|
504 |
+
|
505 |
+
#### Sentence Transformers
|
506 |
+
```bibtex
|
507 |
+
@inproceedings{reimers-2019-sentence-bert,
|
508 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
509 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
510 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
511 |
+
month = "11",
|
512 |
+
year = "2019",
|
513 |
+
publisher = "Association for Computational Linguistics",
|
514 |
+
url = "https://arxiv.org/abs/1908.10084",
|
515 |
+
}
|
516 |
+
```
|
517 |
+
|
518 |
+
<!--
|
519 |
+
## Glossary
|
520 |
+
|
521 |
+
*Clearly define terms in order to be accessible across audiences.*
|
522 |
+
-->
|
523 |
+
|
524 |
+
<!--
|
525 |
+
## Model Card Authors
|
526 |
+
|
527 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
528 |
+
-->
|
529 |
+
|
530 |
+
<!--
|
531 |
+
## Model Card Contact
|
532 |
+
|
533 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
534 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.47.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250002
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.2.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1feb5f2546d211ba75b88bf4fd8bf68993601eb09960df36e2ee998044056cce
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"max_length": 128,
|
51 |
+
"model_max_length": 128,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "</s>",
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|