yahyaabd commited on
Commit
0e9928f
·
verified ·
1 Parent(s): ebcaf9d

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - id
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:42138
10
+ - loss:CosineSimilarityLoss
11
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
12
+ widget:
13
+ - source_sentence: Informasi importir Indonesia 2014 (Jilid Kedua)
14
+ sentences:
15
+ - Indikator Konstruksi Triwulan IV-2011
16
+ - Benchmark Indeks Konstruksi (2010=100), 1990-2013
17
+ - Statistik Upah Q-2 2002-Q-2 2004
18
+ - source_sentence: Direktori Perusahaan Penggiling Padi Aceh 2012
19
+ sentences:
20
+ - Direktori Perusahaan Industri Penggilingan Padi Tahun 2012 Provinsi Aceh
21
+ - Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan
22
+ Negara, Agustus 2024
23
+ - Statistik Harga Produsen Pertanian Subsektor Tanaman Pangan, Hortikultura, dan
24
+ Tanaman Perkebunan Rakyat 2022
25
+ - source_sentence: Neraca pemerintahan pusat triwulanan 2015-2021:2
26
+ sentences:
27
+ - Tinjauan Regional Berdasarkan PDRB Kabupaten/Kota 2017- 2021, Buku 1 Pulau Sumatera
28
+ - Statistik Tebu Indonesia 2020
29
+ - Indikator Pasar Tenaga Kerja Indonesia Agustus 2011
30
+ - source_sentence: Data pembangunan kuartal kedua 2014
31
+ sentences:
32
+ - Katalog Publikasi BPS 2018
33
+ - Indikator Konstruksi Triwulan II-2014
34
+ - Produk Domestik Regional Bruto Provinsi-provinsi di Indonesia Menurut Penggunaan
35
+ 2004-2008
36
+ - source_sentence: Laporan keuangan pemerintah provinsi periode 2003-2006
37
+ sentences:
38
+ - Statistik Perdagangan Luar Negeri Indonesia Ekspor Menurut Kode ISIC 2013-2014
39
+ - Statistik Keuangan Provinsi 2003-2006
40
+ - Statistik Industri Manufaktur Indonesia 2013
41
+ datasets:
42
+ - yahyaabd/bps-publication-title-pairs
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ metrics:
46
+ - pearson_cosine
47
+ - spearman_cosine
48
+ model-index:
49
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
50
+ results:
51
+ - task:
52
+ type: semantic-similarity
53
+ name: Semantic Similarity
54
+ dataset:
55
+ name: allstat semantic dev
56
+ type: allstat-semantic-dev
57
+ metrics:
58
+ - type: pearson_cosine
59
+ value: 0.970895376756816
60
+ name: Pearson Cosine
61
+ - type: spearman_cosine
62
+ value: 0.8818659766397927
63
+ name: Spearman Cosine
64
+ - task:
65
+ type: semantic-similarity
66
+ name: Semantic Similarity
67
+ dataset:
68
+ name: allstat semantic test
69
+ type: allstat-semantic-test
70
+ metrics:
71
+ - type: pearson_cosine
72
+ value: 0.9674313370370765
73
+ name: Pearson Cosine
74
+ - type: spearman_cosine
75
+ value: 0.8746688546004239
76
+ name: Spearman Cosine
77
+ ---
78
+
79
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
80
+
81
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [bps-publication-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
82
+
83
+ ## Model Details
84
+
85
+ ### Model Description
86
+ - **Model Type:** Sentence Transformer
87
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
88
+ - **Maximum Sequence Length:** 128 tokens
89
+ - **Output Dimensionality:** 768 dimensions
90
+ - **Similarity Function:** Cosine Similarity
91
+ - **Training Dataset:**
92
+ - [bps-publication-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs)
93
+ - **Language:** id
94
+ <!-- - **License:** Unknown -->
95
+
96
+ ### Model Sources
97
+
98
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
99
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
100
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
101
+
102
+ ### Full Model Architecture
103
+
104
+ ```
105
+ SentenceTransformer(
106
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
107
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
108
+ )
109
+ ```
110
+
111
+ ## Usage
112
+
113
+ ### Direct Usage (Sentence Transformers)
114
+
115
+ First install the Sentence Transformers library:
116
+
117
+ ```bash
118
+ pip install -U sentence-transformers
119
+ ```
120
+
121
+ Then you can load this model and run inference.
122
+ ```python
123
+ from sentence_transformers import SentenceTransformer
124
+
125
+ # Download from the 🤗 Hub
126
+ model = SentenceTransformer("yahyaabd/allstat-semantic-search-mpnet-base-v2-sts")
127
+ # Run inference
128
+ sentences = [
129
+ 'Laporan keuangan pemerintah provinsi periode 2003-2006',
130
+ 'Statistik Keuangan Provinsi 2003-2006',
131
+ 'Statistik Perdagangan Luar Negeri Indonesia Ekspor Menurut Kode ISIC 2013-2014',
132
+ ]
133
+ embeddings = model.encode(sentences)
134
+ print(embeddings.shape)
135
+ # [3, 768]
136
+
137
+ # Get the similarity scores for the embeddings
138
+ similarities = model.similarity(embeddings, embeddings)
139
+ print(similarities.shape)
140
+ # [3, 3]
141
+ ```
142
+
143
+ <!--
144
+ ### Direct Usage (Transformers)
145
+
146
+ <details><summary>Click to see the direct usage in Transformers</summary>
147
+
148
+ </details>
149
+ -->
150
+
151
+ <!--
152
+ ### Downstream Usage (Sentence Transformers)
153
+
154
+ You can finetune this model on your own dataset.
155
+
156
+ <details><summary>Click to expand</summary>
157
+
158
+ </details>
159
+ -->
160
+
161
+ <!--
162
+ ### Out-of-Scope Use
163
+
164
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
165
+ -->
166
+
167
+ ## Evaluation
168
+
169
+ ### Metrics
170
+
171
+ #### Semantic Similarity
172
+
173
+ * Datasets: `allstat-semantic-dev` and `allstat-semantic-test`
174
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
175
+
176
+ | Metric | allstat-semantic-dev | allstat-semantic-test |
177
+ |:--------------------|:---------------------|:----------------------|
178
+ | pearson_cosine | 0.9709 | 0.9674 |
179
+ | **spearman_cosine** | **0.8819** | **0.8747** |
180
+
181
+ <!--
182
+ ## Bias, Risks and Limitations
183
+
184
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
185
+ -->
186
+
187
+ <!--
188
+ ### Recommendations
189
+
190
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
191
+ -->
192
+
193
+ ## Training Details
194
+
195
+ ### Training Dataset
196
+
197
+ #### bps-publication-title-pairs
198
+
199
+ * Dataset: [bps-publication-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs) at [833f738](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs/tree/833f738c0a143143e2d0e45a8905fee6b262d859)
200
+ * Size: 42,138 training samples
201
+ * Columns: <code>query</code>, <code>doc_title</code>, and <code>score</code>
202
+ * Approximate statistics based on the first 1000 samples:
203
+ | | query | doc_title | score |
204
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
205
+ | type | string | string | float |
206
+ | details | <ul><li>min: 5 tokens</li><li>mean: 10.71 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.58 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.53</li><li>max: 1.0</li></ul> |
207
+ * Samples:
208
+ | query | doc_title | score |
209
+ |:---------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:------------------|
210
+ | <code>Hasil riset mobilitas Jabodetabek tahun 2023</code> | <code>Statistik Komuter Jabodetabek Hasil Survei Komuter Jabodetabek 2023</code> | <code>0.85</code> |
211
+ | <code>Indeks harga konsumen di Indonesia tahun 2017 (82 kota)</code> | <code>Harga Konsumen Beberapa Barang dan Jasa Kelompok Sandang di 82 Kota di Indonesia 2017</code> | <code>0.15</code> |
212
+ | <code>Laporan sektor bangunan Indonesia Q4 2009</code> | <code>Indikator Konstruksi Triwulan IV Tahun 2009</code> | <code>0.91</code> |
213
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
214
+ ```json
215
+ {
216
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
217
+ }
218
+ ```
219
+
220
+ ### Evaluation Dataset
221
+
222
+ #### bps-publication-title-pairs
223
+
224
+ * Dataset: [bps-publication-title-pairs](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs) at [833f738](https://huggingface.co/datasets/yahyaabd/bps-publication-title-pairs/tree/833f738c0a143143e2d0e45a8905fee6b262d859)
225
+ * Size: 2,634 evaluation samples
226
+ * Columns: <code>query</code>, <code>doc_title</code>, and <code>score</code>
227
+ * Approximate statistics based on the first 1000 samples:
228
+ | | query | doc_title | score |
229
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
230
+ | type | string | string | float |
231
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.71 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.57 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.55</li><li>max: 1.0</li></ul> |
232
+ * Samples:
233
+ | query | doc_title | score |
234
+ |:----------------------------------------------------|:------------------------------------------------------------------|:-----------------|
235
+ | <code>Statistik tebu Indonesia tahun 2018</code> | <code>Direktori Perusahaan Perkebunan Karet Indonesia 2018</code> | <code>0.1</code> |
236
+ | <code>Data industri makanan dan minuman 2017</code> | <code>Statistik Upah Buruh Tani di Perdesaan 2018</code> | <code>0.2</code> |
237
+ | <code>Biaya hidup di Gorontalo tahun 2018</code> | <code>Survei Biaya Hidup (SBH) 2018 Gorontalo</code> | <code>0.9</code> |
238
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
239
+ ```json
240
+ {
241
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
242
+ }
243
+ ```
244
+
245
+ ### Training Hyperparameters
246
+ #### Non-Default Hyperparameters
247
+
248
+ - `eval_strategy`: steps
249
+ - `per_device_train_batch_size`: 16
250
+ - `per_device_eval_batch_size`: 16
251
+ - `num_train_epochs`: 5
252
+ - `warmup_ratio`: 0.1
253
+ - `fp16`: True
254
+
255
+ #### All Hyperparameters
256
+ <details><summary>Click to expand</summary>
257
+
258
+ - `overwrite_output_dir`: False
259
+ - `do_predict`: False
260
+ - `eval_strategy`: steps
261
+ - `prediction_loss_only`: True
262
+ - `per_device_train_batch_size`: 16
263
+ - `per_device_eval_batch_size`: 16
264
+ - `per_gpu_train_batch_size`: None
265
+ - `per_gpu_eval_batch_size`: None
266
+ - `gradient_accumulation_steps`: 1
267
+ - `eval_accumulation_steps`: None
268
+ - `torch_empty_cache_steps`: None
269
+ - `learning_rate`: 5e-05
270
+ - `weight_decay`: 0.0
271
+ - `adam_beta1`: 0.9
272
+ - `adam_beta2`: 0.999
273
+ - `adam_epsilon`: 1e-08
274
+ - `max_grad_norm`: 1.0
275
+ - `num_train_epochs`: 5
276
+ - `max_steps`: -1
277
+ - `lr_scheduler_type`: linear
278
+ - `lr_scheduler_kwargs`: {}
279
+ - `warmup_ratio`: 0.1
280
+ - `warmup_steps`: 0
281
+ - `log_level`: passive
282
+ - `log_level_replica`: warning
283
+ - `log_on_each_node`: True
284
+ - `logging_nan_inf_filter`: True
285
+ - `save_safetensors`: True
286
+ - `save_on_each_node`: False
287
+ - `save_only_model`: False
288
+ - `restore_callback_states_from_checkpoint`: False
289
+ - `no_cuda`: False
290
+ - `use_cpu`: False
291
+ - `use_mps_device`: False
292
+ - `seed`: 42
293
+ - `data_seed`: None
294
+ - `jit_mode_eval`: False
295
+ - `use_ipex`: False
296
+ - `bf16`: False
297
+ - `fp16`: True
298
+ - `fp16_opt_level`: O1
299
+ - `half_precision_backend`: auto
300
+ - `bf16_full_eval`: False
301
+ - `fp16_full_eval`: False
302
+ - `tf32`: None
303
+ - `local_rank`: 0
304
+ - `ddp_backend`: None
305
+ - `tpu_num_cores`: None
306
+ - `tpu_metrics_debug`: False
307
+ - `debug`: []
308
+ - `dataloader_drop_last`: False
309
+ - `dataloader_num_workers`: 0
310
+ - `dataloader_prefetch_factor`: None
311
+ - `past_index`: -1
312
+ - `disable_tqdm`: False
313
+ - `remove_unused_columns`: True
314
+ - `label_names`: None
315
+ - `load_best_model_at_end`: False
316
+ - `ignore_data_skip`: False
317
+ - `fsdp`: []
318
+ - `fsdp_min_num_params`: 0
319
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
320
+ - `fsdp_transformer_layer_cls_to_wrap`: None
321
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
322
+ - `deepspeed`: None
323
+ - `label_smoothing_factor`: 0.0
324
+ - `optim`: adamw_torch
325
+ - `optim_args`: None
326
+ - `adafactor`: False
327
+ - `group_by_length`: False
328
+ - `length_column_name`: length
329
+ - `ddp_find_unused_parameters`: None
330
+ - `ddp_bucket_cap_mb`: None
331
+ - `ddp_broadcast_buffers`: False
332
+ - `dataloader_pin_memory`: True
333
+ - `dataloader_persistent_workers`: False
334
+ - `skip_memory_metrics`: True
335
+ - `use_legacy_prediction_loop`: False
336
+ - `push_to_hub`: False
337
+ - `resume_from_checkpoint`: None
338
+ - `hub_model_id`: None
339
+ - `hub_strategy`: every_save
340
+ - `hub_private_repo`: None
341
+ - `hub_always_push`: False
342
+ - `gradient_checkpointing`: False
343
+ - `gradient_checkpointing_kwargs`: None
344
+ - `include_inputs_for_metrics`: False
345
+ - `include_for_metrics`: []
346
+ - `eval_do_concat_batches`: True
347
+ - `fp16_backend`: auto
348
+ - `push_to_hub_model_id`: None
349
+ - `push_to_hub_organization`: None
350
+ - `mp_parameters`:
351
+ - `auto_find_batch_size`: False
352
+ - `full_determinism`: False
353
+ - `torchdynamo`: None
354
+ - `ray_scope`: last
355
+ - `ddp_timeout`: 1800
356
+ - `torch_compile`: False
357
+ - `torch_compile_backend`: None
358
+ - `torch_compile_mode`: None
359
+ - `dispatch_batches`: None
360
+ - `split_batches`: None
361
+ - `include_tokens_per_second`: False
362
+ - `include_num_input_tokens_seen`: False
363
+ - `neftune_noise_alpha`: None
364
+ - `optim_target_modules`: None
365
+ - `batch_eval_metrics`: False
366
+ - `eval_on_start`: False
367
+ - `use_liger_kernel`: False
368
+ - `eval_use_gather_object`: False
369
+ - `average_tokens_across_devices`: False
370
+ - `prompts`: None
371
+ - `batch_sampler`: batch_sampler
372
+ - `multi_dataset_batch_sampler`: proportional
373
+
374
+ </details>
375
+
376
+ ### Training Logs
377
+ <details><summary>Click to expand</summary>
378
+
379
+ | Epoch | Step | Training Loss | Validation Loss | allstat-semantic-dev_spearman_cosine | allstat-semantic-test_spearman_cosine |
380
+ |:------:|:-----:|:-------------:|:---------------:|:------------------------------------:|:-------------------------------------:|
381
+ | 0.0380 | 100 | 0.0498 | 0.0301 | 0.7942 | - |
382
+ | 0.0759 | 200 | 0.0274 | 0.0231 | 0.8115 | - |
383
+ | 0.1139 | 300 | 0.0238 | 0.0194 | 0.8151 | - |
384
+ | 0.1519 | 400 | 0.0203 | 0.0181 | 0.8169 | - |
385
+ | 0.1898 | 500 | 0.02 | 0.0184 | 0.8188 | - |
386
+ | 0.2278 | 600 | 0.0208 | 0.0170 | 0.8229 | - |
387
+ | 0.2658 | 700 | 0.0182 | 0.0176 | 0.8209 | - |
388
+ | 0.3037 | 800 | 0.0187 | 0.0165 | 0.8260 | - |
389
+ | 0.3417 | 900 | 0.0182 | 0.0169 | 0.8237 | - |
390
+ | 0.3797 | 1000 | 0.0187 | 0.0166 | 0.8232 | - |
391
+ | 0.4176 | 1100 | 0.019 | 0.0170 | 0.8261 | - |
392
+ | 0.4556 | 1200 | 0.0186 | 0.0178 | 0.8206 | - |
393
+ | 0.4935 | 1300 | 0.0185 | 0.0173 | 0.8190 | - |
394
+ | 0.5315 | 1400 | 0.0188 | 0.0183 | 0.8172 | - |
395
+ | 0.5695 | 1500 | 0.018 | 0.0166 | 0.8192 | - |
396
+ | 0.6074 | 1600 | 0.0193 | 0.0168 | 0.8240 | - |
397
+ | 0.6454 | 1700 | 0.016 | 0.0152 | 0.8315 | - |
398
+ | 0.6834 | 1800 | 0.0178 | 0.0163 | 0.8263 | - |
399
+ | 0.7213 | 1900 | 0.0174 | 0.0150 | 0.8320 | - |
400
+ | 0.7593 | 2000 | 0.0172 | 0.0152 | 0.8290 | - |
401
+ | 0.7973 | 2100 | 0.0156 | 0.0158 | 0.8284 | - |
402
+ | 0.8352 | 2200 | 0.0164 | 0.0143 | 0.8313 | - |
403
+ | 0.8732 | 2300 | 0.0169 | 0.0165 | 0.8349 | - |
404
+ | 0.9112 | 2400 | 0.0147 | 0.0150 | 0.8368 | - |
405
+ | 0.9491 | 2500 | 0.0163 | 0.0148 | 0.8314 | - |
406
+ | 0.9871 | 2600 | 0.0149 | 0.0137 | 0.8379 | - |
407
+ | 1.0251 | 2700 | 0.0117 | 0.0134 | 0.8415 | - |
408
+ | 1.0630 | 2800 | 0.0124 | 0.0129 | 0.8375 | - |
409
+ | 1.1010 | 2900 | 0.0109 | 0.0124 | 0.8459 | - |
410
+ | 1.1390 | 3000 | 0.0109 | 0.0123 | 0.8445 | - |
411
+ | 1.1769 | 3100 | 0.0107 | 0.0126 | 0.8433 | - |
412
+ | 1.2149 | 3200 | 0.0105 | 0.0131 | 0.8427 | - |
413
+ | 1.2528 | 3300 | 0.0117 | 0.0130 | 0.8434 | - |
414
+ | 1.2908 | 3400 | 0.0107 | 0.0126 | 0.8448 | - |
415
+ | 1.3288 | 3500 | 0.0116 | 0.0119 | 0.8490 | - |
416
+ | 1.3667 | 3600 | 0.0114 | 0.0124 | 0.8394 | - |
417
+ | 1.4047 | 3700 | 0.011 | 0.0127 | 0.8408 | - |
418
+ | 1.4427 | 3800 | 0.0116 | 0.0128 | 0.8400 | - |
419
+ | 1.4806 | 3900 | 0.0117 | 0.0121 | 0.8451 | - |
420
+ | 1.5186 | 4000 | 0.0129 | 0.0125 | 0.8443 | - |
421
+ | 1.5566 | 4100 | 0.0117 | 0.0122 | 0.8464 | - |
422
+ | 1.5945 | 4200 | 0.012 | 0.0117 | 0.8468 | - |
423
+ | 1.6325 | 4300 | 0.011 | 0.0122 | 0.8485 | - |
424
+ | 1.6705 | 4400 | 0.0121 | 0.0112 | 0.8557 | - |
425
+ | 1.7084 | 4500 | 0.0119 | 0.0110 | 0.8570 | - |
426
+ | 1.7464 | 4600 | 0.0105 | 0.0113 | 0.8519 | - |
427
+ | 1.7844 | 4700 | 0.0101 | 0.0113 | 0.8479 | - |
428
+ | 1.8223 | 4800 | 0.0111 | 0.0116 | 0.8499 | - |
429
+ | 1.8603 | 4900 | 0.0108 | 0.0117 | 0.8520 | - |
430
+ | 1.8983 | 5000 | 0.0111 | 0.0111 | 0.8509 | - |
431
+ | 1.9362 | 5100 | 0.0112 | 0.0111 | 0.8546 | - |
432
+ | 1.9742 | 5200 | 0.0104 | 0.0115 | 0.8507 | - |
433
+ | 2.0121 | 5300 | 0.0095 | 0.0105 | 0.8553 | - |
434
+ | 2.0501 | 5400 | 0.0077 | 0.0106 | 0.8562 | - |
435
+ | 2.0881 | 5500 | 0.007 | 0.0104 | 0.8575 | - |
436
+ | 2.1260 | 5600 | 0.0075 | 0.0101 | 0.8619 | - |
437
+ | 2.1640 | 5700 | 0.0077 | 0.0104 | 0.8568 | - |
438
+ | 2.2020 | 5800 | 0.0073 | 0.0103 | 0.8588 | - |
439
+ | 2.2399 | 5900 | 0.0076 | 0.0101 | 0.8598 | - |
440
+ | 2.2779 | 6000 | 0.0072 | 0.0101 | 0.8602 | - |
441
+ | 2.3159 | 6100 | 0.0076 | 0.0104 | 0.8589 | - |
442
+ | 2.3538 | 6200 | 0.007 | 0.0101 | 0.8592 | - |
443
+ | 2.3918 | 6300 | 0.0084 | 0.0104 | 0.8547 | - |
444
+ | 2.4298 | 6400 | 0.0077 | 0.0102 | 0.8594 | - |
445
+ | 2.4677 | 6500 | 0.008 | 0.0102 | 0.8606 | - |
446
+ | 2.5057 | 6600 | 0.0075 | 0.0101 | 0.8596 | - |
447
+ | 2.5437 | 6700 | 0.0072 | 0.0105 | 0.8587 | - |
448
+ | 2.5816 | 6800 | 0.0079 | 0.0105 | 0.8588 | - |
449
+ | 2.6196 | 6900 | 0.0078 | 0.0098 | 0.8605 | - |
450
+ | 2.6576 | 7000 | 0.0075 | 0.0100 | 0.8593 | - |
451
+ | 2.6955 | 7100 | 0.008 | 0.0097 | 0.8649 | - |
452
+ | 2.7335 | 7200 | 0.0074 | 0.0100 | 0.8602 | - |
453
+ | 2.7715 | 7300 | 0.0069 | 0.0098 | 0.8628 | - |
454
+ | 2.8094 | 7400 | 0.008 | 0.0097 | 0.8615 | - |
455
+ | 2.8474 | 7500 | 0.007 | 0.0097 | 0.8639 | - |
456
+ | 2.8853 | 7600 | 0.0071 | 0.0093 | 0.8642 | - |
457
+ | 2.9233 | 7700 | 0.0077 | 0.0102 | 0.8605 | - |
458
+ | 2.9613 | 7800 | 0.008 | 0.0094 | 0.8623 | - |
459
+ | 2.9992 | 7900 | 0.0076 | 0.0094 | 0.8658 | - |
460
+ | 3.0372 | 8000 | 0.005 | 0.0091 | 0.8673 | - |
461
+ | 3.0752 | 8100 | 0.005 | 0.0088 | 0.8688 | - |
462
+ | 3.1131 | 8200 | 0.0051 | 0.0088 | 0.8705 | - |
463
+ | 3.1511 | 8300 | 0.0052 | 0.0089 | 0.8701 | - |
464
+ | 3.1891 | 8400 | 0.0047 | 0.0088 | 0.8711 | - |
465
+ | 3.2270 | 8500 | 0.0046 | 0.0086 | 0.8723 | - |
466
+ | 3.2650 | 8600 | 0.0051 | 0.0086 | 0.8733 | - |
467
+ | 3.3030 | 8700 | 0.0053 | 0.0088 | 0.8736 | - |
468
+ | 3.3409 | 8800 | 0.0049 | 0.0086 | 0.8733 | - |
469
+ | 3.3789 | 8900 | 0.0051 | 0.0087 | 0.8721 | - |
470
+ | 3.4169 | 9000 | 0.0051 | 0.0086 | 0.8716 | - |
471
+ | 3.4548 | 9100 | 0.005 | 0.0087 | 0.8717 | - |
472
+ | 3.4928 | 9200 | 0.0055 | 0.0088 | 0.8709 | - |
473
+ | 3.5308 | 9300 | 0.0046 | 0.0085 | 0.8738 | - |
474
+ | 3.5687 | 9400 | 0.0052 | 0.0085 | 0.8738 | - |
475
+ | 3.6067 | 9500 | 0.0052 | 0.0089 | 0.8706 | - |
476
+ | 3.6446 | 9600 | 0.0049 | 0.0085 | 0.8722 | - |
477
+ | 3.6826 | 9700 | 0.0051 | 0.0088 | 0.8720 | - |
478
+ | 3.7206 | 9800 | 0.0046 | 0.0088 | 0.8721 | - |
479
+ | 3.7585 | 9900 | 0.0051 | 0.0083 | 0.8757 | - |
480
+ | 3.7965 | 10000 | 0.005 | 0.0084 | 0.8744 | - |
481
+ | 3.8345 | 10100 | 0.005 | 0.0084 | 0.8754 | - |
482
+ | 3.8724 | 10200 | 0.0054 | 0.0087 | 0.8737 | - |
483
+ | 3.9104 | 10300 | 0.0054 | 0.0083 | 0.8757 | - |
484
+ | 3.9484 | 10400 | 0.005 | 0.0082 | 0.8754 | - |
485
+ | 3.9863 | 10500 | 0.0049 | 0.0083 | 0.8746 | - |
486
+ | 4.0243 | 10600 | 0.0041 | 0.0081 | 0.8757 | - |
487
+ | 4.0623 | 10700 | 0.0034 | 0.0082 | 0.8760 | - |
488
+ | 4.1002 | 10800 | 0.003 | 0.0083 | 0.8751 | - |
489
+ | 4.1382 | 10900 | 0.0033 | 0.0082 | 0.8770 | - |
490
+ | 4.1762 | 11000 | 0.0034 | 0.0083 | 0.8772 | - |
491
+ | 4.2141 | 11100 | 0.0033 | 0.0082 | 0.8773 | - |
492
+ | 4.2521 | 11200 | 0.0031 | 0.0082 | 0.8787 | - |
493
+ | 4.2901 | 11300 | 0.0033 | 0.0080 | 0.8805 | - |
494
+ | 4.3280 | 11400 | 0.0029 | 0.0082 | 0.8787 | - |
495
+ | 4.3660 | 11500 | 0.0035 | 0.0079 | 0.8796 | - |
496
+ | 4.4039 | 11600 | 0.0034 | 0.0079 | 0.8799 | - |
497
+ | 4.4419 | 11700 | 0.0032 | 0.0079 | 0.8794 | - |
498
+ | 4.4799 | 11800 | 0.0035 | 0.0079 | 0.8807 | - |
499
+ | 4.5178 | 11900 | 0.0035 | 0.0080 | 0.8798 | - |
500
+ | 4.5558 | 12000 | 0.0031 | 0.0079 | 0.8806 | - |
501
+ | 4.5938 | 12100 | 0.0034 | 0.0078 | 0.8812 | - |
502
+ | 4.6317 | 12200 | 0.0031 | 0.0078 | 0.8811 | - |
503
+ | 4.6697 | 12300 | 0.0032 | 0.0078 | 0.8813 | - |
504
+ | 4.7077 | 12400 | 0.0032 | 0.0079 | 0.8809 | - |
505
+ | 4.7456 | 12500 | 0.0032 | 0.0078 | 0.8815 | - |
506
+ | 4.7836 | 12600 | 0.0034 | 0.0077 | 0.8818 | - |
507
+ | 4.8216 | 12700 | 0.0035 | 0.0078 | 0.8817 | - |
508
+ | 4.8595 | 12800 | 0.0032 | 0.0078 | 0.8818 | - |
509
+ | 4.8975 | 12900 | 0.0032 | 0.0078 | 0.8818 | - |
510
+ | 4.9355 | 13000 | 0.0032 | 0.0078 | 0.8820 | - |
511
+ | 4.9734 | 13100 | 0.0031 | 0.0078 | 0.8819 | - |
512
+ | 5.0 | 13170 | - | - | - | 0.8747 |
513
+
514
+ </details>
515
+
516
+ ### Framework Versions
517
+ - Python: 3.10.12
518
+ - Sentence Transformers: 3.3.1
519
+ - Transformers: 4.47.1
520
+ - PyTorch: 2.2.2+cu121
521
+ - Accelerate: 1.2.1
522
+ - Datasets: 3.2.0
523
+ - Tokenizers: 0.21.0
524
+
525
+ ## Citation
526
+
527
+ ### BibTeX
528
+
529
+ #### Sentence Transformers
530
+ ```bibtex
531
+ @inproceedings{reimers-2019-sentence-bert,
532
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
533
+ author = "Reimers, Nils and Gurevych, Iryna",
534
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
535
+ month = "11",
536
+ year = "2019",
537
+ publisher = "Association for Computational Linguistics",
538
+ url = "https://arxiv.org/abs/1908.10084",
539
+ }
540
+ ```
541
+
542
+ <!--
543
+ ## Glossary
544
+
545
+ *Clearly define terms in order to be accessible across audiences.*
546
+ -->
547
+
548
+ <!--
549
+ ## Model Card Authors
550
+
551
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
552
+ -->
553
+
554
+ <!--
555
+ ## Model Card Contact
556
+
557
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
558
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.47.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.2.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c79db82bab751020356015353201f30baafb3a8860a788ce0117d827c37afa7c
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }