--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: lora-llama-2-7b-nsmc-review-understanding results: [] datasets: - nsmc --- # lora-llama-2-7b-nsmc-review-understanding This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co./meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description nsmc data 기반 미세튜닝 모델 ## Intended uses & limitations More information needed ## Training and evaluation data training data로 nsmc train data 앞쪽 2000개, evaluation data로 nsmc test data 앞쪽 1000개를 사용했습니다. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results 총 200step 돌렸습니다. 50step마다 check한 결과는 아래와 같습니다. 50 step training loss: 1.2201 100 step training loss: 0.8892 150 step training loss: 0.8449 200 step training loss: 0.8370 ## 실험 내용 및 분류 결과 미세튜닝한 모델에 nsmc test data 1000개를 입력으로 주어 긍정 또는 부정 단어를 생성하도록 했습니다. 단어 생성 결과는 '긍정' 443개, '부정' 556개, '부산엔 2015년 12월 17일 개봉했습니다. ###Midm;부정' 1개 입니다. 정확도는 정답수 / 1000 * 100으로 계산했으며, 결과는 84.90% 입니다. ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0