File size: 2,630 Bytes
d35e7b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
license: apache-2.0
language:
- en
metrics:
- roc_auc
base_model:
- EleutherAI/gpt-neo-2.7B
pipeline_tag: text-classification
tags:
- machine-text-detection
- machine-revised-text-detection
---
<h1 align="center">Imitate Before Detect: Aligning Machine Stylistic Preference for Machine-Revised Text Detection</h1>
<p align="center">
<a href="https://scholar.google.com/citations?user=Au_y5poAAAAJ">Jiaqi Chen</a><sup>*</sup>, <a href="https://xyzhu1225.github.io/">Xiaoye Zhu</a><sup>*</sup>, <a href="https://leolty.github.io/">Tianyang Liu</a><sup>*</sup>, Ying Chen, <a href="https://xinhuichen-02.github.io/">Xinhui Chen</a>,<br> <a href="https://scholar.google.com/citations?user=koA9QbMAAAAJ">Yiwen Yuan</a>, <a href="https://cooperleong00.github.io/">Chak Tou Leong</a>, <a href="https://zcli-charlie.github.io/">Zuchao Li</a><sup>†</sup>, Tang Long, <a href="https://yusalei.github.io/">Lei Zhang</a>, <br><a href="https://scholar.google.com/citations?user=281EWzQAAAAJ">Chenyu Yan</a>, <a href="https://scholar.google.com/citations?user=mliv6KEAAAAJ">Guanghao Mei</a>, <a href="https://scholar.google.com/citations?user=epTfECgAAAAJ">Jie Zhang</a><sup>†</sup>, <a href="https://scholar.google.com/citations?user=BLKHwNwAAAAJ">Lefei Zhang</a><sup>†</sup>
</p>
<p align="center">
*Equal contribution.<br> †Equal contribution of corresponding author.
</p>
Detecting **machine-revised text** remains a challenging task as it often involves subtle style changes embedded within human-originated content. The ImBD framework introduces a novel approach to tackle this problem, leveraging **style preference optimization (SPO)** and **Style-CPC** to effectively capture machine-style phrasing. Our method achieves state-of-the-art performance in detecting revisions by open-source and proprietary LLMs like GPT-3.5 and GPT-4o, demonstrating significant efficiency with minimal training data.
We are excited to share our code and data to support further exploration in detecting machine-revised text. We welcome your feedback and invite collaborations to advance this field together!

## 🔥 News
- **[2024, Dec 16]** Our online [demo](https://huggingface.co./spaces/machine-text-detection/ImBD) is available on hugging-face now!
- **[2024, Dec 13]** Our [model](https://huggingface.co./xyzhu1225/ImBD/tree/main) and local inference code are available.
- **[2024, Dec 9]** 🎉🎉 Our paper has been accepted by AAAI 25!
- **[2024, Dec 7]** We've released our [website](https://machine-text-detection.github.io/ImBD).
|