--- license: apache-2.0 tags: - generated_from_trainer datasets: - nyu-mll/glue metrics: - accuracy - f1 base_model: bert-base-uncased model-index: - name: sequence_classification results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue args: mrpc metrics: - type: accuracy value: 0.8529411764705882 name: Accuracy - type: f1 value: 0.8943661971830987 name: F1 --- # sequence_classification This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7738 - Accuracy: 0.8529 - F1: 0.8944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.3519 | 0.8627 | 0.9 | | 0.4872 | 2.0 | 918 | 0.6387 | 0.8333 | 0.8893 | | 0.2488 | 3.0 | 1377 | 0.7738 | 0.8529 | 0.8944 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3